THE UNIVERSITY OF MELBOURNE

Simulating Noisy Quantum Algorithms and
Low Depth Quantum State Preparation
using Matrix Product States

Author Under the Supervision of
Azar Christian NAKHL Dr. Charles HILL

Presented in fulfilment of the requirements of the degree of Master of Science.

November 12, 2021

Abstract

Since the proposal of Quantum Computation in the 1980s, many Quantum Algorithms have
been proposed to solve problems in a wide variety of fields. However, due to the limitations of
existing quantum devices, analysing the performance of these algorithms in a controlled manner
must be performed classically. The leading technique to simulate quantum computers classically
is based on the Matrix Product State (MPS) representation of quantum systems. We used this
simulation method to benchmark the noise tolerance of a number of quantum algorithms including
Grover’s Algorithm, finding that the algorithm’s ability to discern the marked state is exponentially
suppressed under noise. We verified the existence of Noise-Induced Barren Plateaus (NIBPs) in
the Quantum Approximate Optimisation Algorithm (QAOA) and found that the recursive QAOA
(RQAOA) variation is resilient to NIBPs, a novel result. Also integral to the performance of
quantum algorithms is the ability to efficiently prepare their initial states. We developed novel
techniques to prepare low-depth circuits for slightly entangled quantum states using MPS. We
found that we can reproduce Gaussian and W States with circuits of O(log(n)) depth, improving
on current best known results which are of O(n).

State of Contribution and Originality
I declare that

e Chapter 1 provides an introduction to the field and discusses work that is well established
in the literature. The review is original in its formation but maintains the conventions
established in the referenced texts.

e Sections 2.1, 3.1, 3.3.1, and 4.1 provide outlines of existing algorithms and procedures but
are original in their formation. These sections provide context for the original works that
follow in the upcoming sections of their respective chapters.

e All other sections in Chapters 2, 3 and 4 are original unless otherwise stated

I also declare that the code produced for the purposes of this thesis are the author’s own with all
external libraries used cited in this thesis.

Azar Christian Nakhl
November 12, 2021

Contents

1 Introduction

1.1 The Quantum Circuit Model
1.2 Quantum Algorithms
1.3 Experimental Realisation of Quantum Computers
1.4 Simulation
1.5 Introduction to Tensor Networks
1.6 Tensor Network & MPS Software Packages
1.7 Outline of Thesis e
2 Grover’s Algorithm
2.1 Outline of Algorithm
2.2 Constructing the Circuit
2.3 Comparing Different Simulators oL
2.4 Noise Model e
2.5 Results e
3 The Quantum Approximate Optimisation Algorithm
3.1 Outline of Algorithm
3.2 Noise-Induced Barren Plateaus
3.3 Recursive QAOA e
3.4 Tailoring RQAOA to NISQ era devices
3.5 Summary e
4 Quantum State Preparation
4.1 Outline of Baseline Procedure
4.2 Varying Ko e e e
4.3 Fixing k t0 2 . . L L e
4.4 Alow depth approach
4.5 Tailoring Circuits to NISQ era devices
4.6 Results e

4.7 Summary
5 Conclusion

Bibliography

12
12
13
15
16
17

19
19
22
24
28
29

30
30
32
33
35
36
37
45

47

48

Chapter 1

Introduction

Quantum Computing has been a rapidly growing area of research since it was proposed in the
1980s by Benioff, Feynman and Manin[l, 2, 3]. The motivation underpinning this desire for a
quantum simulator was that, in the words of Feynman “Nature isn’t classical, dammit, and if
you want to make a simulation of nature, you’d better make it quantum mechanical’[2]. In the
decades that followed many quantum algorithms have been proposed which solve problems ranging
from chemistry[4]| to finance[5| with theoretical speed and accuracy outperforming best known
classical algorithms. As such, the development and analysis of quantum algorithms is a key area
of research within quantum computing. Included in this is the efficient preparation of quantum
states which form the starting point for many quantum algorithms|6]. However, as the capabilities
of experimentally realisable quantum computing devices remains limited|7], classical simulation
of quantum computers remains a key component in the analysis, validation and benchmarking of
quantum algorithms. Matrix Product States (MPS) are a representation of quantum systems that
have found significant application in the simulation of quantum computing as a result of their
ability to represent and manipulate states of minimal entanglement in a space efficient manner|8].
In this thesis, we will analyse the performance of quantum algorithms under noisy conditions and
develop novel techniques to efficiently prepare slightly entangled quantum states using MPS.

Returning to the fundamentals of quantum computing, there exists a number of ways in
which a quantum model of computation may be realised. The quantum circuit model of compu-
tation is the most common model of general purpose quantum computers that is discussed and
extends the familiar classical model of computation|9]. An equivalent to this is the Quantum Tur-
ing Machine[10] which extends Alan Turing’s model of computation to states in a Hilbert Space
under unitary evolution. Alternatively, the Adiabatic Quantum Computing[11| model is a separate
model of quantum computation which uses the Adiabatic Theorem to solve problems encoded by a
possibly complicated Hamiltonian through adiabatic evolution from a Hamiltonian whose ground
state is simple to prepare. This model is particularly useful for optimisation type problems that
may be easily mapped onto a Hamiltonian. For the entirety of this thesis, we will confine our
discussion to that of the quantum circuit model of quantum computing.

1.1 The Quantum Circuit Model

In analogy with classical computation, the fundamental unit of information in the quantum
circuit model of quantum computation is the qubit. The qubit is a 2-level quantum system com-
prising a 2-dimensional Hilbert Space with an ensemble of such systems forming a 2"-dimensional
Hilbert space. Hence, in addition to being able to store any binary string of size 2" as per a clas-
sical computer, the quantum system may store a superposition of any number of binary strings.
Acting upon these qubits, again in analogy with classical computation, are quantum gates. Un-
like classical computation however where logical operations are non-reversible, quantum gates are

1.2. QUANTUM ALGORITHMS

reversible. Lastly, measurement of any quantum mechanical system will result in a collapse of any
superposition of the system and this holds for quantum computers just the same. This is starkly
different to classical computation where measurement will generally not result in any disturbance
of the state.

Theoretically, quantum information may be stored in some set of qubits in perpetuity in
analogy with a theoretical classical bit. In practice, however, the limited coherence times of
physically realisable qubits mean that this is not currently possible|[7]. Furthermore, the no-
cloning theorem|12] prevents the reproduction of quantum information which ultimately means
that information on how to reproduce some quantum state must be stored classically. We discuss
this topic further in Chapter 4 of this thesis.

1.2 Quantum Algorithms

Making use of this new model of computation there have been many algorithms proposed
that can solve problems faster than classical computers. Broadly speaking there are a number
of categories that most common quantum algorithms fall under|6]. The Quantum Fourier Trans-
form is the quantum equivalent of the discrete Fourier Transform and gives rise to a number
of common algorithms. This includes the Deutsch—Jozsa Algorithm, which was the first quan-
tum algorithms proposed which provided an exponential speed-up over any possible deterministic
classical algorithm, and Shor’s Algorithm which can factor semi-prime numbers in O(log(N)?). Al-
gorithms based on amplitude amplification work by selecting and amplifying some subset of your
Hilbert space and includes Grover’s Algorithm which can search through an unordered dictionary
in O(v/N) time and is discussed extensively in Chapter 2.

Another category of quantum algorithm that has received a lot of attention recently are
hybrid quantum-classical algorithms. Broadly speaking, these algorithms work by encoding some
entangled trial state on a quantum device and using classical optimisation techniques to solve
for the optimal state of the system. Hybrid quantum-classical algorithms include the Variational
Quantum Eigensolver and the Quantum Approximate Optimisation Algorithm (QAOA) which is
discussed much more extensively in Chapter 3.

Although one may naturally suspect that the properties of superposition and entanglement
are the source of the supremacy of these quantum algorithms the extent to which this is the case is
not yet known|[13]. In general, demonstrating that an algorithm possesses true quantum supremacy
is difficult as one must prove not only that it is better than existing classical algorithms, but also
that it is better than any classical algorithms possible.

1.3 Experimental Realisation of Quantum Computers

The experimental realisation of quantum computing is a rapidly growing area of research
and has even found some commercial success. At the forefront of this are the superconducting
qubits based on the physics of Cooper pairs and Josephson junctions. Common implementations of
circuit-based quantum computing such as those by IBM and Google, as well as D-Wave’s adiabatic
quantum computer use variations on the superconducting qubit|7] with the primary variation
resulting from differences in connectivity of the qubits. Circuit based quantum devices are currently
able to achieve systems on the order of 60 qubits|7, 14|, with adiabatic quantum devices such as
D-Wave having systems of over 1000 qubits|15]. Limited system sizes aside, the primary drawback
of these quantum devices are gate infidelities and short coherence times which severely limits
the algorithms that may be executed successfully. The term Noisy Intermediate-Scale Quantum
(NISQ) computing has been coined to describe the current generation of quantum devices. A

4

1.4. SIMULATION

common metric used to track the capabilities of NISQ era devices is Quantum Volume (QV) which
tracks the maximum size of a square circuit that may be successfully executed on some given NISQ
era architecture. As of 2020 IBM now has devices with a QV of 7 x 7.

In spite of this, in 2019 Google was able to demonstrate quantum supremacy using a 53 qubit
device by sampling quantum random circuits[16], a problem which they claim would take 10,000
years on the best available classical computers available at the time. Although the problem instance
for which quantum supremacy was demonstrated is not particularly useful. It demonstrated the
ability for even NISQ era devices to demonstrate quantum supremacy if given the right problem.

1.4 Simulation

Given that real quantum devices are still in their infancy and unable to run even modestly
sized quantum algorithms, a need exists to be able to simulate out quantum computers in order
to validate the performance and characteristics of quantum algorithms. To this end, a number
of different simulation techniques have been developed. Standard state vector simulators perform
the unitary evolution of a quantum system using the standard linear algebra techniques used by
everyday physicists to do quantum mechanics analytically|9]. For example, the equal superposition
state may be represented and acted on as

1 1 |1
S50+ 1) = —= [} (L)

ool B

Stabiliser simulators[17] are another type of classical simulator which work by representing
a quantum state by the set of operators which map the state to itself. For example for the equal
superposition state again,

7(I0> +11) = 7(|0> +11)) (1.3)

= X\/—(|0> +11). (1.4)

Hence we can say that the group (X, I) stabilises the —= (|O) +|1)) state and uniquely represents the

state. Then acting on the state with a Z gate as before gives the result (ZX Z, I') which stabilises the
\/Li(|0) —|1)) state. It is a particularly useful representation for systems that involve only Clifford

operators, where we recognise that ABA"T = B! where A and B are elements of the Clifford group.
Compared to state vectors that require O(2") memory, this stabiliser representation requires only
O(n?) memory provided that only Clifford operations are involved. Furthermore, gate execution
time is O(n) which is exponentially faster than ordinary state vector simulators. Measurement
however requires O(n?) time. The stabiliser formalism is also particularly useful in quantum error
correction where it is used to define the syndromes used to determine errors within logical qubits.

This thesis however will focus on another type of classical simulator known as the Matrix
Product State (MPS) simulator based on the tensor network formalism. We will now provide you
with an overview of the tensor network formalism which underpins these MPS simulations and a
brief tour of quantum systems as Matrix Product States. Note that as we will be using pre-existing
libraries which implement these tensor networks and all their features this introduction will only
serve as a high-level overview and will omit a lot of technical detail. This information in the
upcoming sections follows [18] and [19].

1Up to a global phase

1.5. INTRODUCTION TO TENSOR NETWORKS

OO GO8

Figure 1.1: Diagrammatic representation of a scalar A, vector B, and matrix Cg,

Figure 1.2: Diagrammatic representation of a Equations 1.5 and 1.6

1.5 Introduction to Tensor Networks

For the purposes of this thesis, a tensor may be thought of as an ordered bucket of scalars,
and a generalisation of familiar vectors and matrices. An n-dimensional tensor is hence a bucket
of scalars each indexed by n labels. Elements of a tensor are represented as A, u,. u,, Where
Ug, U7 - . . Uy, are the n labels that characterise all elements of the tensor. Diagrammatically, follow-
ing [18], tensors may be represented as some given shape with lines emerging from it representing
each of the n dimensions of the tensor as per Figure 1.1.

Operations on two or more tensors may be described by specifying how each of their elements
interact. For example the vector dot product and matrix multiplication operations may be defined
as,

=

S
>
I

CLZ'bZ' = aibi =C (15)

[en]

7o
2

—

A

AuiBip = AgiBiy = Cyp (1.6)

o

i—
where @ and b are vectors of size N , A and B are matrices of size N x N and where the third equality
on each line utilises the Einstein summation convention. Diagrammatically we may represent the
summation over indices by connecting lines corresponding to the indices to be summed over as per
the example in Figure 1.2. This represents the most basic tensor network. These operations which

combine two (or more) tensors into one are known as contractions.

1.5.1 Reshaping and Decomposing Tensors and Tensor Networks

One may reshape a tensor and redistribute its elements over a different set of indices. One
may also introduce new indices of size 1 at will. This provides a mechanism by which the outer
product of two tensors may be defined.

Ay = Aari Bea = Bica
AR® B = AwiBica = Caped (1.7)
where we have introduced an index ¢ to the matrices Ay, and B4 of size 1. Diagrammatically, this
may be represented as

&) a
(5)—(4)
d b
Figure 1.3: Diagrammatic representation of a Equations 1.7

The final major concept of tensor networks which we need to consider are decompositions

1.5. INTRODUCTION TO TENSOR NETWORKS

where a single tensor is decomposed into some tensor network. However, as we are able to reshape
tensors, we do not need to develop from scratch methods to decompose general n-dimensional
tensors, instead reshaping into a 2-dimensional tensor whereby standard matrix decompositions
such as,

e SVD Decomposition: A = UXV where U and V are unitary matrices and X is a diagonal
matrix with real values > 0 (the singular values)

e QR Decomposition: A = QR where () is some unitary matrix and R is an upper triangular
matrix

e Eigendecomposition: A = PDP~! where P is a matrix containing the eigenvectors of A
along the columns of the matrix and D is a diagonal matrix of the eigenvalues where the ith
diagonal element corresponds to the ith eigenvector column in P,

after which the tensor may be reshaped back to its original form. We will see later that SVD is
the best decomposition for the construction of our tensor network. Hence in the following section
we will assume that the decomposition strategy is SVD.

1.5.2 Quantum Systems as Tensor Networks

Building upon this foundation, we may now construct a linear tensor network representation
of a quantum system. For an ensemble of qubits of size N we typically represent the state of the
system as a 1-dimensional tensor of size 2. We may reshape the vector to an n-dimensional tensor
each of size 2 where each dimension corresponds to one qubit. We may then follow the schematic in
Figure 1.4 to construct the MPS through repeated tensor decompositions. We restrict ourselves to
SVD decomposition as it allows for a more straightforward analysis of the state. However, note that
other decompositions may be used to construct the state albeit with perhaps some transformations
required to take advantage of certain features which we will discuss.

The two types of tensors in our final MPS are,

e The qubit tensors: Each with an external bond of size 2 and an internal bond of size D. In
our construction in Figure 1.4 when combined with their right bond tensor these form one
of the orthonormal unitary tensors of the SVD decomposition.

e The bond tensors: Each with two internal bonds of size D representing the D non-zero
singular values which result from the SVD decomposition. These tensors may be contracted
into the left or right qubit tensor or left separate depending on the MPS implementation.

If other types of decompositions are used, for example, the QR decomposition, then the bond
tensors would not exist as discrete entities and you would simply have each qubit tensor connected
together directly with an internal bond.

The first thing benefit bestowed to us by using this representation comes about when you
consider the SVD decomposition® of the state along some given subsystems A and B of the entire
state. This decomposition may be written down as.

) =D Aileit) |oF) (18)

2This way of framing the SVD decomposition is commonly referred to as a Schmidt decomposition in the
literature. However as it is the same procedure, we will continue to refer to it as SVD

1.5. INTRODUCTION TO TENSOR NETWORKS

where A and B are the two bipartitions which we split the state along, ; are the singular values
and ’¢;4> and ‘¢f > are orthonormal basis for subsystem A and subsystem B respectively. The
entropy of entanglement of the subsystems may then be written down as,

S(pa) = S(ps) = Tr(palog(pa)) (1.9)
pa = Trp(|)Y]) (1.10)

= 2_InF e Yot (1.11)

— S(pa) = Z\)\iIQIOg(|)\i|2). (1.12)

Hence we can see that there is a direct correspondence to the singular values of the state’s SVD
decomposition and the bipartite entropy along some given subsystems of the entire state. Recog-
nising that the bond tensors of our MPS construction also correspond to the singular values of the
SVD decomposition, we see that states with low bipartite entropy will have small bond tensors.
These states can then be said to be efficiently representable in MPS form as each qubit tensor
will only require some low fixed number of values each. Hence the system will grow linearly with
the number of qubits, unlike the state vector representation where the addition of qubits will
necessarily result in an exponential increase in the memory requirements.

1.5.3 Truncation

In the event that the bond tensors required to reproduce a state are too large and the memory
requirements too costly a procedure known as truncation may be used to provide an approximation
to the state whilst reducing the overall resource requirements. Most implementations of SVD
provide the singular values in descending order, this provides a natural way forward to approximate
the state with as little loss in fidelity as possible given some provided maximum bond dimension.
By eliminating the x smallest singular values and hence reducing the size of the bond tensor and
its adjacent qubit tensors it can be shown that this provides the best approximation to the state
as possible for a given bond dimension. One may think of this truncation operation as a kind of
half measurement where the entanglement of the system has slightly collapsed. Hence, as we do
for real measurements the entire state must be renormalised and recanonicalised.

Note that although this is a powerful feature of this simulation technique we do not use
truncation at any point in this thesis. However, we do explore a similar analogue in the preparation
of low depth circuits for arbitrary quantum states in Section 4.3.

1.5.4 Canonical Form
States represented in MPS form have the following gauge freedom.

G — 91 — Qq 9 — X MX 11— a1 —HY |y 11— @
_ (1.13)

Hence it is typical to define canonical forms of MPS which satisfy certain conditions. The following
are the typical canonicalisation conditions that one typically wishes to satisty.

*

q; — — 4
=1 [= (1.14)
qi — — 4

1.5. INTRODUCTION TO TENSOR NETWORKS

) —)
2] 2] 2] 2] 2 | 2% |
j(b)
D (c) D
|q0)) — o) FOH)
2] 2 22 | 2 | 2% |

O 17 — Ola) =07 [¥™)

D R (99 D R
190) FOA la1) FO— [9™) —— —Oln) O~ ™)
Al T
|
D R S
‘%) —(O— |Q1> —(O— ’CI2> —(O— |CI3>
2 | 2 | 2 | 2 |

Figure 1.4: (a) The indices ¢ ... g, are reshaped into a single index. (b) An SVD decomposition is
performed resulting in a 2-tensor |qg) of size 2 x D, a diagonal 2-tensor with D terms (the singular values)
and a 2-tesnor |1*) of size D x 2V~1. (c) The bond tensor is contracted into |1)*) and the 2V ~1 sized
index reshaped into two indices of size two and 2V ~2 respectively. (d) The bond index and the index of
size two are squeezed together. (e) An SVD decomposition is performed of [p*). (f) The D x 2 index is
reshaped back into 2 indices of size D and 2 respectively. (g) The decomposed [¢)*) tensor is returned to
the original network with |go). (h) Steps (d)-(g) are repeated for [¢)**) to obtain the final tensor network.

where the qubits at the end of the network will have the bond tensors (circles) omitted. These
are known as the left and right canonicalisation conditions respectively. Note that if the MPS
is formed using the procedure outlined in Figure 1.4 then the left canonicalisation condition is
automatically met as the SVD decompositions which product orthogonal unitary operators were
performed with left bond tensors contracted into the right. It is possible to enter the state into
both left and right canonical form simultaneously by performing pairwise contractions and SVD
decompositions along the entire state from left to right, and then right to left. [19] refers to this
procedure as sweeping the MPS.

A very important consequence of this canonicalisation is that it allows for the computation of
reduced density matrices, and hence measurement, locally. Recall that the reduced density matrix
over some subset of qubits which form subsystem A is,

pa = Trp([Y)¢]). (1.15)
Hence for a state in MPS form we follow the procedure in Figure 1.5 to determine the reduced
density matrix over the first two qubits as an example, where we see that p4 could be determined

1.5. INTRODUCTION TO TENSOR NETWORKS

(1.16)

— — — | Pa (1.17)

qo0q1 doq1 |

N |

Figure 1.5: Procedure to determine the reduced density matrix p4 for a state in MPS form

entirely from the qubit tensors (and surrounding bond tensors) in subsystem A. Hence the mea-
surement probabilities p; for qubits ¢; € A can be determined entirely locally by inspecting the
diagonal elements of p4.

Sampling from the probability p;, we can simulate measurement by collapsing the qubit(s)
into the sampled state. This may be done by shrinking the qubit tensor’s external index to one
dimension corresponding to the measured value, throwing out the results for the non-measured
value, and appropriately normalising the tensor. This is then propagated to the rest of the system
by sweeping outward from the qubit. Finally, the qubit tensor’s external dimension may be restored
with zeros everywhere along that dimension. The shrinking of the qubit tensor to one helps reduce
the overall cost required during the sweeping of the MPS as values that would otherwise be zero do
not have to continue to be propagated through the system. That said this measurement operation
still possesses an O(n) time cost as a result of the outward sweep.

1.5.5 Unitary Operations on MPS

Having prepared the MPS of some quantum system and determined how it may be measured
and stored efficiently, the final aspect that needs to be considered in order to use MPS as a
simulator is the evolution of the quantum system by unitary evolution. Typically in the gate
based model of quantum computation, unitary operations are relatively local, with only one or
two qubit operations being available. Under the state vector simulation method, evolution of
the system must occur universally regardless of the operation being performed. With MPS, local
operations may be performed locally.

Single qubit operations are rather simple with the unitary operator forming a 2 x 2 2-tensor
which may be contracted directly into the qubit tensor of the MPS as per Figure 1.6a. Larger
operators are more complicated however. Assuming the operation acts on nearest neighbour qubits
only, one approach is to simply contract the qubits together and squeeze their indices before
contracting the 2¢ x 2¢ 2-tensor into d-level qubit (qudit). This qudit may then be reshaped
back into its original form and decomposed to reform the MPS. If the MPS was in canonical
form, this approach maintains that by virtue of the fact that the contraction and decomposition

10

1.6. TENSOR NETWORK & MPS SOFTWARE PACKAGES

QQ . o{my—(n)
ox

(a) A H gate applied to qubit gg (b) A CX gate applied to qubits gy and ¢;

Figure 1.6: Example of one and two qubit operations on an MPS

steps maintain canonical form. An example of this procedure for a 2-qubit operation is shown
in Figure 1.6b. A second approach based on Matrix Product Operators (MPOs) which are the
operator analogue of MPS also exists for these multi-qubit operations. However, this approach is
generally not useful for 2-qubit operations as the number of contractions required exceeds that of
the approach already discussed. As our simulations seek to mimic real quantum devices as much
as possible, we will not be making use MPOs for gate operations.

For multi-qubit operations which are not nearest neighbour we note that the way forward in
this case is to swap the qubit tensors until they are adjacent then apply the operator after which
the qubit tensors may be swapped back. To achieve one may either apply a sequence of 2-qubit
SWAP gates or perform a sequence of contractions, reshapes and decompositions. Hence these non
nearest neighbour operations are very costly and should generally be avoided in MPS simulations.

1.6 Tensor Network & MPS Software Packages

A number of different software packages exist which utilise MPS to simulate quantum cir-
cuits. IBM’s open-source quantum computing package Qiskit[20] includes a number of classical
simulators, including one which utilises MPS. In addition to this, dangMPS, a library developed at
The University of Melbourne allows for the construction of large scalable MPS quantum circuits
over many computing nodes within a High Performance Computing (HPC) cluster|[19]. Software
packages also exist which allow for the creation of arbitrary tensor networks such as open-source
libraries Quimb|21] and Google’s TensorNetwork[22]. In this thesis we will benchmark dangMPS,
Qiskit and Quimb in Chapter 2 and additionally use all three at various points throughout the
thesis as appropriate.

1.7 Outline of Thesis

In this thesis, we will use MPS to explore problems in quantum computing and quantum
information theory. Specifically, we will simulate quantum algorithms under noisy conditions and
approach the task of low depth initial state preparation. We will develop a noise model tailored
for MPS simulators and apply it to Grover’s Algorithm, hence determining the noise tolerance
of the algorithm. We will then investigate a hybrid quantum-classical algorithm, the Quantum
Approximate Optimisation Algorithm (QAOA) and its recursive adaptation RQAOA, investigating
the susceptibility of RQAOA to Noise-Induced Barren Plateaus. We will then approach the task
of determining low-depth circuits for initial quantum states and develop novel procedures which
outperform best known methods for states of limited entanglement.

11

Chapter 2

Grover’s Algorithm

Grover’s Algorithm, proposed in 1996 by Lov Grover|[23], is an algorithm that performs an un-
ordered search through a dictionary in O(\/N) time. Classically, no algorithm can guarantee a
solution in better than O(n) time, hence Grover’s algorithm provides a quadratic improvement
over the best known methods. Grover’s Algorithm has applications including solving constraint
satisfaction problems and breaking symmetric-key cryptography, among others. It is noted however
that in many applications of the algorithm, such as database searching, the loading of an initial
state is required which in general may overcome any speed up. In Chapter 4 we will consider this
task of efficient initial state preparation.

We will introduce Grover’s Algorithm and how it may be implemented on a Quantum Com-
puter in Section 2.1 and 2.2 and use it to benchmark a number of MPS simulators in Section 2.3.
We will then introduce common noise models for NISQ devices in Section 2.4.1 and determine
a noise model which reflects this and suits MPS simulations. Finally, we will consider the noise
tolerance of Grover’s Algorithm in Section 2.5.

2.1 Outline of Algorithm

The outline of the algorithm is as follows. Suppose we have a system of size N = 2" and a
desired marked state x. To begin we assume that the prior probability that any state is the desired
state is equal. To reflect this we put the system into an equal superposition of all states,

1 N-1 .
[¥) = Ny ZO i), (2.1)

where ¢ is a bitstring of a number between 1 and N — 1
We then “mark” the desired state by applying an oracle f(z) which applies a 7 phase rotation
to state |z) and leaves all other states unchanged. After performing this operation the marked

state will have an amplitude of \;—% with the remaining states keeping their original amplitude of

LN. Sampling the system at this stage though will continue to result in a uniform probability

distribution, to change this, the next step of the algorithm is to invert about the mean. Noting
that the application of the oracle results in a decrease in the overall mean amplitude of the system,

this inversion will result in an increased magnitude of the amplitude of the marked state as follows
N

W= i = e (22)

N -2
NVN

AN-2) 1 _3N-—4
NYN VN N3

— Tl = 23

12

2.2. CONSTRUCTING THE CIRCUIT

where Uy(y) is a unitary operator which encodes f(x) and Usy, is the following operator

2_1 2 2
N N N
2 2 2
2 2 2

which performs the mapping s + Uy, [¢)) — s where s is some state of the system.

The application of the oracle and inversion operators is referred to as a Grover iteration and
may be repeated in order to increase the probability of measuring the marked state. It is found
that for large N, v/ N iterations are required to achieve a marked state probability of 100%.

2.2 Constructing the Circuit

In order to execute this algorithm on a simulator, we must first construct the operations of
the algorithm using the standard gate set available to the simulator (or quantum device) we wish
to use. Typically the gates available in quantum computing software packages are the single-qubit
Pauli operators (X,Y,Z), the 2-qubit controlled-X operator (CX) in addition to the Hadamard (H),
phase (S) and g (T) operators. This gate set is universal, that is, any unitary operation that may
be executed on a quantum device may be reduced down to the application of these operators.
For simplicity, we will also allow ourselves the use of the arbitrary single-qubit rotation gate (U)
as this is also typically available. The following is a typical gate set available on most quantum
computing libraries including all three which we use in this thesis.

0 1 0 —i 10
X—[l 0] Y= 0} Z—[o —1}
11 1 1.0 L0
H_ﬁ{l —1} = 1lo J he {0 e”/‘*} 20
10 0 0
_ [cos(3) —esin(5) (VLo
Uo, ¢, \) [emsin(g) 6+ cos (2) CX=10 00 1
0010

Given this, we can now follow the algorithm procedl-lre step by step and construct the circuit
which will execute the algorithm. We recognise that the Hadamard gate applied to all qubits will
place the system in an equal superposition, hence satisfying the first step of the procedure,

H10) = 5(10) + 1) (27)
= H"|0®") = Qin Z |4) . (2.8)

From here, we require an operator which conditionally applies a phase rotation for some
given marked state. We can realise this as a controlled-Z like operation noting that we may flip
any of the controls or targets from 1 to 0 by selective application of X gates at given sites. The
controlled-Z gate looks as follows,

1 00 O
010 0
CZ = 001 0 (2.9)
000 —1
As the controlled-Z gate is not in the standard gate set, we need to determine a decomposition

13

2.2. CONSTRUCTING THE CIRCUIT

for it. The Z gate performs a flip operation on the states |[+) and |—), similarly to the X gate on
the states |0) and |1). Furthermore, the Hadamard gate performs the transformation H |0) = |+)
and H |1) = |—). Given this, we may decompose the 2-qubit controlled-Z operator as CZy, =
H,CX1H; where the subscripts denote the qubit(s) for which the operator is applied to.

2.2.1 Construction of multiply controlled gates

In order to run the algorithm for greater than two qubits, however, one requires the con-
struction of a multiply controlled gate. The prototypical construction of the controlled-controlled-X
gate, known as the Toffoli gate, requires 9 single-qubit gates and 6 2-qubit CX gates|[9]. This is
acceptable, however, 4-qubit Toffoli gates require at least 15 single-qubit gates and 16 2 qubit CX
gates. Going beyond this, general decompositions can be shown to scale exponentially with the
number of qubits|24].

An alternative to this is to introduce ancillary qubits into the system. This may be difficult in
practice as NISQ) era hardware is typically limited in the number of qubits available, however, in the
context of limited quantum volume, this may in fact be the way forward. As for MPS simulations,
they do not have such constraints as long as the bipartite entropy remains low. Recognising that the
n-controlled-X gate performs the mapping |qoq1 ... ¢n) = |90q1 - Gn-1(¢n ® (@@ A @ A ... Gu-1)))
we can construct an operator using n — 2 ancillary qubits, sequentially applying logical AND
between pairs of qubits

ap = qo Nq1 = TOFF(qo, q1, a0) (2.10)
a;=ap NG =qANqAqg=TOFF(ay,q,a;) (2.11)
(2.12)
Ap_9 = Up_3 N\ dn—1 = Qo VAN a1 AN qn—1 = TOFF(OJn,g, qn—1, an,g), (213)

where qq . . . ¢, represent the real qubits and ag ... a,_o represent the ancillary qubits which are all
initialised into the |0) state, and TOF F(co, c1,t) is a Toffoli gate with controls ¢y, ¢; and target
t. With the a,,_» qubit containing gy A ¢1 A ...¢,—1 we then perform a CX gate controlled on
a,_o and targeted on g, to complete the construction of the n-controlled-X gate. As the Toffoli
gate is Hermitian, and hence self-inverse, one may then reset the ancillary qubits by applying the
Toffoli gates in reverse. Finally, one may convert the n-controlled-X gate to a n-controlled-Z gate
by wrapping the ¢, with Hadamard gates analogous to the construction of the 2 qubit CZ gate.
An example of this ancillary construction for a 3-controlled-Z gate can be seen in Figure 2.1.

2.2.2 Inversion about the mean

Now we need to construct the operator U;,,. Firstly we recognise that we can write this
operator down in terms of a generalised |[+%") state as follows,

Upno = 2|+ X+%"| - 1. (2.14)
Wrapping this operator with some Hadamard gates then gives us,
HE"Upo HE™ = H® 2 |27 Y+ | H®" — HE"[H®"
= [0%"X0%"| — 1 (2.15)
where we have recognised that Equation 2.15 is a similar construction to that of the oracle for the
|0®™) state. This construction does result in a global phase shift of 7 radians as evidenced by the

overall minus sign in Equation 2.16, however global phase has no physical consequence hence it
does not matter for the successful execution of the algorithm. Hence the inversion step is executed

14

2.3. COMPARING DIFFERENT SIMULATORS

% 0) —{H |—e—{HHX X HHA
! 0) i+ HX XA

Qo

- g 0) {H B HX | XHH A

aq .
w 7 0) {aHZHEHXHZHXHEHA

Figure 2.1: A 4-controlled-Z gate using 2 ancillary Figure 2.2: Grover’s Algorithm Circuit with a
qubits |111...1) target state

N
GV
JA\
A\

N

\
N]

JA\

A\

using a multiply-controlled-Z gate wrapped by some X gates to set the “marked” state to |00...0)
and then wrapped further by some Hadamard gates.

Runtime for Grover's Algorithm on Various Simulators

102

® dangMPS
Quimb

® Qiskit

H
2

Time (seconds)

,_.

=)
=

L]

T T T T
9 6 8 10 12
System Size (qubits excluding ancilla)

Figure 2.3: Comparing the runtime for Grover’s Algorithm across various common libraries with MPS
capability

Figure 2.2 shows the final construction for Grover’s Algorithm that was executed on all
simulators but without the ancilla qubits or the decomposition of the multiply controlled-Z gates.
For simplicity, all simulations used a marked state of [11...1) but as outlined in Section 2.1 the
construction for oracles of different marked states is identical with simply some X gates wrapped
around the oracle.

2.3 Comparing Different Simulators

The Grover’s Algorithm circuit as prepared in Section 2.2 was set up on 3 different software
packages, the internally developed dangMPS Simulator[19], IBM’s Quantum Computing SDK
Qiskit[20], and an open-source tensor network library Quimb|21]. In addition to the gates in
Equation 2.6 all three simulators had the ability to execute controlled-Z gates and Qiskit addi-
tionally had the ability to encode Toffoli and multiply controlled gates as well, however in order
to ensure the results of all three are comparable this in-built functionality was not used. The
minimum system size was 4 qubits as below that one can simulate the entire algorithm trivially

and without any ancillary qubits. Simulations were all run on a desktop computer with 4 cores at
3.9GHz and 16GB RAM.

15

2.4. NOISE MODEL

Qubits 4 5 6 7 8 9 10 11 12 13
dangMPS 92.28% 99.84% 98.95% 98.30% 99.96% 99.75% 99.78% 100% 100% 100%
Qiskit 96.38% 99.91% 99.66% 99.66% 100.00% 99.91% 99.95% 100% 100% 100%

Quimb 96.16% 99.92% 99.60% 99.54% 99.99% 99.95% 99.95% 100% 100% 100%

Table 2.1: Success rate of Grover’s Algorithm after 10,000 shots on 3 different MPS simulators

As expected all three simulators were capable of executing the algorithm successfully and
were able to achieve a 100% success rate for all systems greater than 10 qubits'. The lowest
success rate was found for the 4 qubit system across all 3 simulators. Table 2.1 shows the success
rate across the 3 different simulators for systems up to 13 qubits

Figure 2.3 outlines the execution time for Grover’s Algorithm across the three different sim-
ulators. The internally developed simulator outperforms the other simulators tested, however, the
exponential growth of dangMPS and Qiskit are similar. Quimb performs exponentially worse than
the other two simulators. The exponential nature of the growth can be attributed to the fact
that the number of Grover iterations needed grows exponentially with the number of qubits. This
underpins the fact that Grover’s algorithm still grows as O(v/N = 2"/?), and the factor of two
improvement in the exponent is simply not enough to counteract the exponential growth in the
search space as you add more (qu)bits.

The speed and parallelisation ability makes dangMPS a good candidate for the execution of
large circuits however its limited feature set means that its applicability is limited in scope. Qiskit
has the ability to execute circuits using various simulation techniques as well as real quantum
devices and has various noise models and algorithms in-built. Quimb allows for the construction
and manipulation of arbitrary tensor networks and allows for easy visualisation of the network.
Hence we will, at various points, rely on all three of these libraries throughout this thesis.

2.4 Noise Model

2.4.1 Noise in Quantum Devices

In order to simulate Grover’s Algorithm under noisy conditions, we must first consider the
different types of noise that quantum devices are prone to. NISQ) era devices are subject to errors
resulting from (i) gate infidelities, (ii) readout errors and (iii) decoherence resulting from interaction
with the environment|25]. Single qubit gate infidelities may be modelled as a depolarising channel
which can be represented as a combination of bit-flip errors and/or phase-flip errors. We can
represent these errors using the Pauli operators as follows,

€vit-lip(P) = Poit-ipX pX + (1 — Puic-aip)p (2.17)

Ephase—ﬂip (,0) - pphase—ﬂiprZ + (1 - pphase—ﬂip)pa (218>

where p is the density matrix of the quantum state and the ps define the probability of a phase-flip

or bit-flip error occurring on a given qubit. Similarly, readout errors may also be modelled as

bit-flips as per Equation 2.17. In addition to this, there are also two-qubit gate infidelities which
may be modelled as a depolarising channel applied to the target qubit(s).

The final source of error, decoherence from environmental interactions, is the primary source
of error on NISQ era devices and is a combination of thermal relaxation/excitation and phase
decoherence. These interactions can be thought of as perturbations orthogonal to the (x,y) plane

'For the remainder of this chapter, a system of size n qubits does not include the number of ancillary qubits
unless explicitly specified

16

2.5. RESULTS

and z axes of the Bloch sphere respectively. Unlike gate infidelities and readout errors, the system
is guaranteed to experience decoherence hence it is a matter of when, not if, the system will
breakdown. The decoherence is modelled as an exponential decay parameterised by two times T}
and Ty as follows,

eri(p)e p+ (1 - €)X pX (2.19)

era(p)e™ p+ (1 — e ZpZ. (2.20)
Table 2.2 outlines the noise characteristics of one of IBM’s quantum devices. As we can see,
single-qubit errors are negligible with readout and 2-qubit errors contributing a greater percentage.
Noting that the average gate execution time of a gate on ibmq_montreal is 422 ns. We can compute
how many consecutive gates will result in an equivalent error rate to the CX error rate as follows,
Gates = —85120 x log(1 — 0.01842) /422 (2.21)

= 3.75.

Hence we can conclude that decoherence will be the overwhelming factor that any noise model will
need to account for.

Readout Error CX Error X Error /X Error Ty (us) Th (us)
2.63% 1.842% 0.0497% 0.0497% 85.12 71.32

Table 2.2: Noise Characteristics of ibmq_montreal (as of 30th September 2021)[14]

2.4.2 Noise Model for MPS Simulators

Given that depolarising and readout errors have a substantially smaller equivalent noise rate
compared to thermal relaxation and dephasing the noise models we will construct will only emulate
these forms of error. We constructed 3 noise models, one consisting of random application of S
gates, one of Z gates and the last of measurement gates. The former two simulate dephasing with
the last one simulating thermal excitation/relaxation. We hypothesised that the application of
measurement gates has the ancillary benefit that it simplifies the MPS by collapsing the entan-
glement of the state. We found that all 3 models had a comparable effect on Grover’s Algorithm.
Section 2.5 will present results for the measurement gate noise model only.

2.5 Results

To determine the effect of Grover’s Algorithm under noise, we require a benchmark that we
can use to define success. We define this as pparea = 0.5. As we are not in the position to fix the
success rate a priori however, we scan over a range of noise rates. Firstly though, we normalise
our noise rates by determining an equivalent number of noisy gates per circuit

N.= (Ngp+ N)e (2.22)
where N¢ is the number of gates per Grover iteration, p is the number of Grover iterations, N is
the size of the system and ¢ is the noise rate. This means that for any given circuit we can ensure
that there are the same number of noisy gates present.

We ran the noisy simulations on The University of Melbourne High Performance Computing
cluster Spartan|26] with 32 3.7 GHz CPU cores and 64GB RAM for system sizes between 4 and
20 qubits with variable noise rates on dangMPS. Figure 2.4 shows the success rate for Grover’s
Algorithm for a range of N, between 50 and 150 per circuit. In order to achieve 50% success, we
can see that we can limit our scope to 60 < N, < 100 per circuit. We see that there is a linear

17

2.5. RESULTS

Noisy Gates

6x 10!

Equivalent Noisy Gates for various success rates

102 4

{1 L ¥ J * ®»
emosD® L] L]
oed» » -e
woowee ® o L]
- e ¢ L]

o®eD DO ® o

@*roee @ (L

»oa O e

T T T
50 60 70

% Success

T T
30 40

4 qubits
5 qubits
6 qubits
7 qubits
8 qubits
9 qubits
10 qubits
11 qubits
12 qubits
13 qubits
14 qubits
15 qubits
16 qubits
17 qubits
18 qubits
19 qubits
20 qubits

Noisy Gates

100 1

95

90 1

854

801

751

701

65

601

Equivalent Noisy Gates in Grover's Algorithm

T T T T T
10 12 14 16 18

System Size (qubits ex ancilla)

T T T
4 6 8

T
20

Figure 2.4: Success Rate of Grover’s Algorithm for
50 < N, < 150

Figure 2.5: Equivalent Number of Noisy Gates, NN,
for Figure 2.6

Noise Tolerance of Grover's Algorithm Effect of Noise of Bond Dimension in Grover's Algorithm

* 200 *
[]
[]
.
14 o
10 ° 175 * []
.
° 5 150 1 ° .
° § . L]
. * E 125

o 100 ° a
g ® _g

= 5 100 A
£ . . “E’

=1 75 -
. E
10714 ° 3

® = 504

[]
[] 254
[]
1072 4 . ol ®
4 [8 10 12 14 16 18 20 0 20 40 60 80 100

System Size (qubits ex ancilla) % Noise

Figure 2.6: Noise Tolerance of Grover’s Algorithm
benchmarked as the highest noise rate possible for
which Pmarked > 0.5

Figure 2.7: Effect of noise on bond dimension of a
10 qubit instance of Grover’s Algorithm

relationship between the success of the algorithm and the number of noisy gates present in the
circuit with a slight trend towards larger circuits being less tolerant towards noise as can be seen
in Figure 2.5.

This result is quite devastating when it comes to the noise tolerance of Grover’s Algorithm as
the exponentially increasing depth of the circuit for larger systems will mean that the noise rates
tolerated by the algorithm will be exponentially suppressed as can be seen in Figure 2.6.

Next, we determined the effect of our noise model on the bond dimension of the MPS. We
found that the bond dimension of noise-free instances is very low with a uniform bond dimension of
2 across all qubits. As we introduced noise, however, we found that the bond dimension increased
substantially as per Figure 2.7. We hypothesise that this occurs as a result of a distorted Toffoli
gate that fails to reset some ancillary qubits hence generating entanglement across all qubits.

From this, we can conclude that Grover’s Algorithm is a poor candidate to run on NISQ era
hardware. Its low entanglement nature means that it may be possible to run very large instances of
Grover’s Algorithm on classical computers using MPS simulators, however, the exponential depth
of the algorithm means that time will be a limiting factor even if memory is not.

18

Chapter 3

The Quantum Approximate Optimisation Al-
gorithm

The Quantum Approximate Optimisation Algorithm (QAOA) is a variational quantum algorithm
(VQA) designed to solve combinatorial optimisation problems|27|. It is a hybrid quantum-classical
algorithm where the quantum device encodes a trial ansatz determined by the problem Hamiltonian
and the classical computer varies the parameters according to some optimisation algorithm in order
to determine the ground state. QAOA is particularly useful for solving Ising type problems and
in particular problems in graph theory such as Max-Cut|28] and the Travelling Salesman Problem
(TSP)[29]. Such combinatorial optimisation problems are considered to be NP-hard, hence best
known classical approaches rely on approximation algorithms, such as the Goemans-Williamson
approximation algorithm|30] for the Max-Cut problem. This classical approximation algorithm has
a runtime of O(Nm)|[31] where m is the number of edges and guarantees an approximation ratio of
0.8785[30] with any ratio above 0.9412 theorised to be NP-hard[32]. QAOA has a runtime of O(Np)
where p are the number of iterations needed which has been demonstrated to be sub-linear|33].

It has been shown that the parameterised ansatz of VQAs have landscapes that vanish
exponentially under noisy conditions|34] creating what is coined as a Noise-Induced Barren Plateau
(NIBP). We will simulate QAOA under noisy conditions and verify the presence of NIBPs for
randomly generated graphs with 5 and 10 nodes respectively in Section 3.2. In addition to this,
we will investigate a non-local adaptation to QAOA known as recursive QAOA (RQAOA) and
explore the susceptibility to NIBPs for this algorithm in Section 3.3. Lastly, we will exploit the
low connectivity of graphs of low bounded degree to run large instances of RQAOA using fewer
qubits in Section 3.4.

3.1 Outline of Algorithm
3.1.1 Constructing the Ansatz

Consider a general constraint satisfaction problem with N constraints. The objective function
of said problem will be of the form

Clz) = Z Ci(z) (3.1)

where z is an instance and C;(x) = 0 if the constraint is satisfied by the instance and 1 otherwise.
We then wish to minimise C'(z), that is, we wish to ensure that as many constraints are simultane-
ously satisfied by some given instance x as possible. Mapping this onto a problem we can solve on
a quantum device, we construct the Hamiltonian for this objective function in the computational

19

3.1. OUTLINE OF ALGORITHM

(Z) basis as follows

Hp = 3 Cili)i (3.2)

where the s are bitstrings that encode each of the possible instances. We recognise that this
Hamiltonian is diagonal in the computational basis and also note that it will typically involve only
up to quadratic terms in Z. We can time evolve this Hamiltonian in the usual way|[12],

Hp(t) = e~ Hrt/h (3.3)
where, noting that the time-independent Hamiltonian Hp is strictly real, we have replaced time
with some angle a;;. We now introduce a “mixer” Hamiltonian

N
Hy =—) X (3.5)

=1
Hy(t) = e~tHu/h (3.6)
HM(Q]) — eiﬁj i1 Xi (37)

with ground state |s) = H®N ‘O@’N > At this point, it is easy to see how we can solve this problem
adiabatically. As the ground state of H,, is easy to prepare, we may set up a Hamiltonian to
slowly interpolate from our mixer Hamiltonian to our problem Hamiltonian as follows,
H(t)= (1 —t)Hy + tHp. (3.8)
Provided we evolve slowly enough, by the adiabatic theorem[12], we will remain in the eigenstate
of Equation 3.8 at all times. Hence at ¢ = 1 our system will be in the eigenstate of Hp and hence
we would have solved our constraint satisfaction problem.
However, we wish to map our problem onto the gate based model of quantum computation.
Hence we restrict ourselves to the time evolved operators in Equations 3.7 and 3.4 and construct
the following ansatz inspired from the adiabatic algorithm

p
g, 85), = [T Ha () Hp (o) |s) (3.9)
j=1

where p > 1 € Z. The expectation value of the objective function is then

S(p, o, 8;) = (o, Bi|Helay, B)), (3.10)
which may be minimised by some optimisation technique. It is obviously true that

min(S(p, aj,) = min(S(p + 1, a5, 3,)) (3.11)

and it is shown in [27] that,

lim min(S(p, a;, B;) = min C'(z). (3.12)

p—0o0 x€EH

Hence this ansatz is an appropriate choice for unconstrained binary optimisation problems.

3.1.2 Classical Optimisation

To determine for the a; and ; which minimise Equation 3.10 we rely on classical optimi-
sation. As the gradient is not easily accessible we are constricted to gradient-free optimisation
techniques such as the Nelder-Mead simplex method[35], COBYLA[36] or SPSA[37].

Nelder-Mead optimisation works by forming an n-dimensional simplex (with n + 1 vertices)
and traversing the cost landscape via reflection, expansion, contraction and pivoting of the simplex.
This technique works well in general and is commonly used for VQAs. However, pivoting/shrinking
the simplex can become a costly operation for large n. An alternative optimisation is the Con-

20

3.1. OUTLINE OF ALGORITHM

strained Optimisation by Linear Approximation (COBYLA) which similarly evaluates the cost
function at the vertices of an n-dimensional simplex (commonly referred to as the “trust region”)
and linear interpolation is used to approximate the cost function within the trust region which
can then be shrunk accordingly. COBYLA is a good algorithm for jagged cost landscapes and
does not involve pivoting of the entire simplex hence it is not costly in that regard. Other opti-
misers such as Simultaneous Perturbation Stochastic Approximation (SPSA) exist which take a
similar approach to simulated annealing and randomly perturb the parameters of the cost function.
Stochastic methods such as SPSA generally require more iterations to converge but are generally
quite resilient to poor local minima and noisy landscapes.

We will be using the ScipPy|[38] implementation of these classical optimisation algorithms in
our simulations.

3.1.3 Executing the Algorithm

Given the QAOA ansatz and an appropriate classical optimiser, the steps to solve some given
problem are as follows

1. Determine a Hamiltonian Hp in the computational basis that appropriately encodes the
objective function you wish to optimise. This will typically be a linear combination of
products of Z; terms, where 7 denotes the qubit acted on by the Z operator

2. Construct a circuit that encodes the ansatz in Equation 3.9 with some fixed p

e e.g. Z;Z;Z) couplings may be encoded as

A\
JA\
A\

elaZzZ]Zk — (

(3.13)

S RZ(a) 4
extending and contracting in the usual way (similar to the MCZ gates of Chapter 2) for
greater or smaller couplings

o ¢ %X = RX(a) and e~ can be implemented using the U (26, /2, 37 /2) and U(0, 0, \)
(up to a global phase) respectively using the definition of U(6, ¢, \) in Equation 2.6.

A\

3. Classically optimise «;, 3; with some appropriate gradient-free optimiser

4. Execute the circuit from Step 2 with the optimal angles and measure the final solution in
the computational basis

Note that it can be demonstrated that if p does not increase as a function of the problem
size n then there exists a classical algorithm that can determine the optimal parameters for the
problem|27]. This will be discussed further in Section 3.3.

3.1.4 An example: Max-Cut

A common problem in graph theory that can be solved using QAOA is the Max-Cut problem.
The Max-Cut problem involves the formation of two disjoint sets of vertices with as many connected
edges as possible. Hence we can write down the Hamiltonian for a generic graph as follows,

1
H=3 N zzj—1 (3.14)

(¢,5)EE

21

3.2. NOISE-INDUCED BARREN PLATEAUS

))
0) —{#] R, (61)
0) —{H] R.(51)
0) —{&] R.(B)
0) —{a] R.(B1)
0) —H] R.(B)

(D)—)

) 5 5 B B

1 1
b) H= (2023 - I) +5 (ZOZ4 _ 1>
e~ 0 0 0 1 1
0 ee/2 0 0 +—<Z124—]) +—(ZQZS—I)
[=22)=1 ¢ o e o 2 2
0 0 0 e/ + % (Zgz4 — I)

Figure 3.1: (a) the p = 1 QAOA circuit encoding the Hamiltonian in (d). (b) The construction of the
Z 7 Ising coupling gate which makes up the mixer Hamiltonian. (c) An example graph of 5 nodes
generated using Erdds—Rényi with p = 0.5. (d) the Hamiltonian encoding Max-Cut problem as per

Equation 3.14 for the graph in (c)

where F is the set of edges in some graph (G. We recognise that if < and j are in the same set then
Z;Z; = 1 and no term will be added to the Hamiltonian, otherwise a —1 term will be added. Hence
minimising this Hamiltonian will solve the Max-Cut problem for the graph G. We demonstrate
this for an example graph of 5 nodes in Figure 3.1. For the remainder of this chapter, we will
confine ourselves to solving the Max-Cut Hamiltonian, however, our analysis is equally applicable
to any Hamiltonian that may be solved using QAOA or it’s variants unless otherwise specified.
For simplicity, we will also omit all factors of I in our simulations without loss of generality.

3.2 Noise-Induced Barren Plateaus

The ability to correctly optimise a Hamiltonian is the key to running VQAs such as QAOA
successfully. Principally, having a training landscape with sufficiently large gradients is necessary
in order to find the global minimum. For certain types of VQAs such as those with global cost
functions it has been demonstrated that the gradient of the training landscape vanishes exponen-
tially in n[39]. This does not affect QAOA, however, it has been shown that noise is another factor
that may induce barren plateaus in the training landscape|34]. It has been shown that for any
given ansatz and expectation operators, the gradient of the training landscape vanishes exponen-
tially as O(2L1°82(9) where L is the number of layers (i.e. p in our formulation of QAOA) and
g < 1is a noise parameter. Likewise, it has been demonstrated that the cost function concentrates
exponentially towards that of the equal superposition state. Recognise that this is true regardless
of the specific value of ¢, which will only ever affect the severity of the NIBP.

22

3.2. NOISE-INDUCED BARREN PLATEAUS

QAOA solving Max-cut preblem for 5 node graphs

1.00 4 - - -

0.85

Approx ratio

—&— No noise exact state-vector
No noise 1,024 shots
—e— No noise 10,000 shots
—e— 1% Depolarising Channel for all gates - noisy final cost
1 - 1% Depolarising Channel for single qubit gates only - noisy final cost
—8— 1% Depolarising Channel for all gates - noise free final cost

Figure 3.2: QAOA solving the Max-Cut problem on 100 random 5 node graphs

3.2.1 NIBPs in Max-Cut

To verify the presence of NIBPs in QAOA we follow [34] and solve the Max-Cut problem on
100 randomly generated graphs. We do so under both no-noise conditions and under a 1% depo-
larising channel. The graphs were generated with the Erdés—Rényi model[40] using the NetworkX
library[41] with p = 0.5 being the probability of an edge being formed. Each instance of QAOA
was repeated 10 times, with the best result recorded as the final result for a given graph. This
allows for sufficient statistics to be collected. The COBYLA optimiser was used as the size of the
systems was sufficiently small. The circuits were prepared using Qiskit’s MPS simulator backend
and run on the Spartan HPC with one CPU core per graph.

To measure the success of a given instance we define the approximation ratio of a given
optimised instance of QAOA to be
S, o, 55)
mingey C(x)
where the minimum of C'(z) can be found classically for these small instances by determining the
minimum eigenvalue of Hp, which we did using NumPy|[42]|. The results can be seen in Figure 3.2.

We see that QAOA instances suffer from NIBPs for even low depth instances regardless as
to whether the noise applies to single or multiple qubit operators and regardless of noisy or noise-
free final cost. Extending beyond the noise models analysed in [34], we also ran instances that
sampled from the final no-noise quantum state, in these instances we expect the standard error of
our measurement to be

Approximation Ratio = (3.15)

AC_ o

¢ CVN
B \/ﬁ > (G = C)?
a CVN

which we find to be on the order of about 1.6% for 1024 shots. As we can see though, this kind of

noise although having an impact on the overall final approximation ratio does not induce any kind
of barren plateau. This makes sense as shot noise can be viewed as a form of measurement noise

(3.16)

23

3.3. RECURSIVE QAOA

which can be shown to have only have a linear decrease in n on the gradient of the landscape[34].

3.2.2 The Cost landscape of QAOA

We include a visual demonstration of the exponentially vanishing gradient resulting from
NIBPs in Figure 3.3. We see that although the general landscape remains broadly the same, we
recognise that the gap between the peaks and troughs is far smaller. Note that for this particular
instance the approximation ratio determined with noise is 0.42 compared to 0.94 in the noise-free
case.

QAOA (p=1) Cost Landscape

3.0
1.0
2.5
0.5
2.0
=15 0.0
L0 -0.5
0.5 1.0
o.n

QAOA (p=10) Cost Landscape (Noise Free) QAOA (p=10) Cost Landscape (Noisy)
L5 15
3.0
L0 10
25
0.5 0.5
2.0
& 15 0.0 & 0.0
10 -0.5 -0.5
0.5 -1.0 -1.0
0.0 -1.5 -15
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 10 L5 2.0 2.5 3.0

ain ai

Figure 3.3: QAOA Cost landscape for the example in Figure 3.1 for p = 10. a1 ...a10 and B; ... B9 are
fixed to their optimal values

3.3 Recursive QAOA

We hinted earlier that QAOA has some limitations which may hamper any hopes of quantum
advantage. Specifically, it is noted that the locality of the QAOA Hamiltonian means that for
problems with some bounded degree there exists an upper bound on the approximation ratio that
may be achieved|33].

24

3.3. RECURSIVE QAOA

A Hamiltonian is said to be local if each term involves O(1) interactions only. This is
separate from geometric locality where each interaction is physically proximal, e.g. Z;Z;,;. It
is clear that QAOA is most likely local with respect to its Hamiltonian, however in general it
won’t be geometrically local. For local Hamiltonians on some bounded degree graph, it is found
that each term has a sphere of influence of d” and that p must have a lower bound of O(log(n))
in order to beat the best known classical optimisations algorithms|[33|. Functionally this means
that the effective runtime of QAOA is likewise O(log(n)). Note that this does not mean that an
O(log(n)) depth circuit will guarantee a solution, just that the solution will be closer than any
classical optimisation algorithm.

3.3.1 Outline of Algorithm

An alternative to standard QAOA which is non-local is proposed by [43] known as Recursive
QAOA. Tt is constricted to Zy symmetric Hamiltonians (i.e. of the form Zi,je 5 ZiZ;) and works
as follows.

1. Prepare and optimise a standard level-p QAOA circuit for some given problem as per Section
3.1.3

2. For the problem Hamiltonian Hp =), .. ZiZ; and optimised «;, 3; determine which
| (i, Bil Zi Zj|cui, Bi)] is the largest

3. Fix these qubits to be correlated, Z; = Z;, if («, 5i|ZiZ;|a;, B;) > 0, or anti-correlated,
Z; = —Zj, if <ozi,ﬁ¢\ZiZj\ai, ﬁz> < 0 and eliminate Z; from Hp

4. Repeat 1-3 with the new Hp on n — 1 qubits

5. Once the problem size hits some threshold n. stop and determine the solution to the n. sized
system classically (e.g. via brute force)

6. The solution to the n. sized Hp can be propagated backwards to determine the solution to
the full Hp.

This can be further adapted to Ising Hamiltonians with niygeractions > 2 as per [43| and can addi-
tionally be adapted to handle individual Z; terms by the introduction of an ancillary qubit. We
note that the run time for this circuit for p = 1 is O(n) which appears to be worse than standard
QAOA if indeed p being constant is sufficient. However, RQAOA vastly outperforms QAOA for
all p € O(log(n)) in terms of correctness of solution. As the depth requirements appear to be low
for RQAOA, it shows promise as a suitable algorithm to be run on NISQ era hardware.

3.3.2 An example

By way of example let’s consider the following 5 node graph
SO

For Max-Cut the problem Hamiltonian takes the following form,

1 1 1 1 1 1
Hp = 5(Z020 = 1)+ 52120 = 1) & 5(ZoZs = 1) + (2524 = 1) + 5(Z1Za = 1) + 5(ZZs =).

2
(3.17)

25

3.3. RECURSIVE QAOA

Performing QAOA as per Section 3.1.3 we find that
argmax, ;e p| (o, B ZiZj|a, B)| = ZoZs (3.18)
with (a, f|Z0Zs|a,) ~ —0.47. Hence we can fix this edge and eliminate one of the nodes as

follows a a
N1 X2
()

Setting Z3 = sign((a, 8| ZoZs|a, B)) Zy, the Hamiltonian then becomes,

1 1 1 1 1
H= 5(2021 -1+ 5(2122 -1+ 5(2224 —1I)— §(ZOZ4 +1)+ 5(2124 —1I). (3.19)
Running QAOA on this reduced system we find that Z;Z; is the most correlated bond with

(o, B| ZoZs|av, B) = 0.58. Eliminating node 4 then gives the following system

020

1 1
H = (22 = D522 = 1) + 5(ZaZ0 = 1), (3.20)

The solution to this system is straightforward. It’s Z; = 1, Zy = Zy = —1 (or vice-versa as the
system is Z, symmetric). Hence we can propagate our answer backward to determine the solution
for the full graph,

Zo=—-1,721=1,Zy=—1 (3.21)
Jy=2Zy=—1 (3.22)
Z3=—ZJy=1. (3.23)
Which plugging into Equation 3.17 gives,
Hp = %(—1 -1+ %(—1 —1)+ %(1 -1+ %(—1 —-1)+ %(—1 -1+ %(—1 —1) (3.24)
= —4, (3.25)

which is the correct ground state of that Hamiltonian.

3.3.3 Noise in Recursive QAOA

The question that has not yet been explored widely in the literature is, how susceptible is
RQAOA to noise. To investigate this we performed a similar procedure to what was undertaken
in Section 3.2.1. We generated 100 random connected 10 node graphs and ran both noisy and
noise-free instances of RQAOA and QAOA using a Max-Cut Hamiltonian. The noise model was
a 1% depolarising channel on both one and two-qubit gates and we repeated each graph instance
10 times as before. The simulations were run under the same environment and classical optimiser
as Section 3.2.1. The results can be seen in Figure 3.4

As standard QAOA is a subroutine of RQAOA we expected to see some manifestation of
the NIBP as seen in the previous section, however as we can see there is only a minimal drop off
in the approximation ratio for large p. Additionally, we recognise that for the Max-Cut problem
in particular we do not require p to be particularly large in order to achieve an approximation
ratio of approximately 1. A possible explanation for this minimal drop off in approximation ratio
is that because each QAOA subroutine only needs to determine the most maximally correlated
term, our results will be more typical of a noisy training with noise-free final cost simulation than
that of a completely noisy algorithm. This can also be seen in Figure 3.3 where we see that the

26

3.3. RECURSIVE QAOA

QAOQA & RQADA solving Max-cut problem for 10 node graphs RQAOA solving Max-cut problem for 10 node graphs

101 g—=et—0" : s ——§ | —®— QAOA with noisy training 1.000 g —8— RQAOA with noisy training

QAOA with no noise ./ M RQAOA with no noise
—&— RQAOA with noisy training 0.975
—&— RQAOA with no noise

o
@

0.950

0.925 4

o
o

0.900

| 0.875 -
0.850 -
0.2+ 0.825

T T T T T 0.800 T T T T T
2 4 6 8 10 2 4 6 8 10
Layers Layers

Approx ratio
Approx ratio

<o
FS

Figure 3.4: Average Approximation Ratio for RQAOA and QAOA for 100 10 node connected graphs as
per Section 3.3

Average Maximum Bond Dimension for QAOA Circuits over 100 graphs

294
ro.9

284

~N
=
T

o

@

™
o
L

ro.7

~
i
L

ro.6

Maximum Bond Dimension
o) ~)
IN] [G
L |
Approximation Ratio

~N
[

Layers

Figure 3.5: Average Maximum Bond Dimension for 10 qubit QAOA instances as per Section 3.3.3

minima are at the same location regardless of noise. This successful result aside, we still recognise
that the overall trend is still indicative of a NIBP of some sort and it is likely that more complex
Hamiltonians will exhibit poor performance as a result of NIBPs more readily than what we have
observed with the Max-Cut problem.

3.3.4 Bond Dimension of QAOA and RQAOA Circuits

As we have seen, the success of QAOA is intimately tied to how much of the graph each
interaction term “sees”. We expect then, that the minimum entanglement required to successfully
solve a graph instance is tied to the connectivity of the graph, and low entanglement instances
of QAOA will not be successful for highly connected graphs in particular. To that end, we keep
track of the maximum bond dimension for each QAOA instance run on 10 node graphs as per the
previous section with results presented in Figure 3.5. Note that for RQAOA, the results as to the
maximum bond dimension are identical to that of standard QAOA as it is a subroutine algorithm.
As we can see, the approximation ratio for standard QAOA and the maximum bond dimension
line up almost exactly which re-affirms the result that the QAOA circuit must see the whole graph
in order to successfully determine the ground state of the problem Hamiltonian. This result also
suggests that QAOA is not easily simulatable on MPS simulators at scale.

27

3.4. TAILORING RQAOA TO NISQ ERA DEVICES

0) —{H] Ry (1)
0) —{#] Ro(B1) ——
0) —{H] R.(f1) =
0) —{H] R, (51)
0) —{H] R,(5) F——

o) A R.(5)
0) —{4]
0) —{41] Ra(51)

0) —{H]

Figure 3.6: Circuit from Figure 3.1 where we want to only measure the Z; Zs term of the cost function

3.4 Tailoring RQAOA to NISQ era devices

We have seen that RQAOA is resilient to the sort of noise we may expect in NISQ era devices.
Hence our attention turns to strategies that would enable RQAOA to be run on NISQ era devices.
In particular, the qubit requirements for larger systems is particularly prohibitive. With this in
mind, we will explore techniques that may be combined to reduce the overall size of the circuits
that need to be executed for a given problem instance.

3.4.1 Removing Qubits outside the lightcone

The first technique relies on the fact that for any given term in our Hamiltonian we require
only the measurement of the qubits for which that term directly acts on. As such qubits that are
not in the lightcone of the qubits that we are measuring may be removed entirely.

The lightcone of a given qubit is defined to be the set of gates directly or indirectly correlated
with the qubit of interest. For example in Figure 3.6 we see that qubit 2 has no gates which are
correlated with the output of qubits 1 and 3 which are to be measured to determine the Z; 73
coupling. Hence that qubit may be removed from the system entirely. It is important to recognise
that within each Hp(q;) each of the ZZ terms commute, hence even though it may look like the
Z1Zs term is indirectly correlated by virtue of the fact that qubit 5 is indirectly correlated, this
is not the case as we can shift that term to the end of the circuit without loss of generality. This
procedure is particularly useful for graphs of low bounded degree. We provide an example of this
procedure in Section 3.4.3.

3.4.2 Leaf Node elimination

In addition to the procedure above we may also eliminate leaf nodes by recognising that

0) R (B) [H A~
0) —{H] R.(51) = (3.26)
o) —[H——R5)
where the €y gate is some dephasing channel of the form,
eo(p) = (1 —sin?)1 — (1 — cos?0)ZpZ. (3.27)

28

3.5. SUMMARY

To show that Equation 3.26 is true, consider the action of the ZZ coupling on the first two qubits,

e2i6 1 1 621'9
1 1 €—2i9 e—2i9 1
| . .
ZZ(Q)p(ZZ(Q)) - 9 1 6—219 6—219 1 . (328)
62i9 1 1 621'9
Taking the partial trace over the second qubit gives
1 [e2i 4 —2i 9
p1 = 3 [9 20 | o—2if (3-29)
_ |cos(20) 1
N [1 cos(ZG)} (3.30)
cos?f — sin? 0 1
- [1 cos? @ — sin? 9] (3.31)

which concurs with Equation 3.27. Hence Equation 3.26 is true.

This construction works well for low p instances of QAOA where we recognise that the leaf
node must have a distance of > p away from the leaf node in order to be removable. Note that the
dephasing parameter 6§ must also be tuned in line with the other parameters of the QAOA ansatz.

3.4.3 Reduced Circuit Sizes for 3-regular graphs

To demonstrate the performance of these techniques, we generated 100 random 3-regular
graphs using the NetworkX library and constructed the 100 qubit Max-Cut QAOA circuits for
each. We then ran the above procedures to reduce the circuit size for each term in their respective
Hamiltonians. We can see that for low degree graphs we are able to solve the Max-Cut problem
using relatively only a small number of qubits. These sized circuits are easily achievable on current
day NISQ era devices which are of the order of 65 qubits[14]. Combined with the high noise
tolerance and success rate for low p of RQAOA it does appear to be possible to solve the Max-Cut
problem using real quantum hardware.

9] 1 2 3

Lightcone Removable 93.89 85.59 72.24
Leaf Node Elimination 3.90 820 12.69
Total Removable 96.99 93.79 &84.93
Total Remaining 3.01 6.21 15.07

Table 3.1: Average number of qubits removable for terms in the Hamiltonian of 100 node 3-regular graphs

3.5 Summary

In this chapter, we demonstrated the noise tolerance of the QAOA algorithm and confirmed
the existence of Noise-Induced Barren Plateau at relatively low depths. We then investigated an
adapted form of QAOA known as recursive QAOA and determined the noise tolerance of this
relatively new algorithm, a process that has not been undertaken before. Having demonstrated
remarkable noise tolerance we then provided a pathway to execute QAOA circuits and in particular
low p RQAOA on NISQ era hardware by exploiting the locality of the QAOA problem Hamiltonians
to exclude as many gates and qubits as possible. The techniques presented resulted in a strong
97% decrease in the number of qubits required for p = 1 in 3-regular graphs. This demonstrates a
path forward to run instances of RQAOA on NISQ era devices.

29

Chapter 4

Quantum State Preparation

Loading quantum states is a key component of quantum algorithms such as Grover’s Algorithm
which we encountered in Chapter 2, as well as the HHL algorithm for solving linear systems of
equations|[44] and options pricing algorithms used in finance[5]. Despite being a key task, the best
known techniques for determining circuits to load a state require exponential depth in general
[45, 46]. Extending upon a procedure for Quantum State Tomography using MPS presented in
[47] we will seek to develop algorithms which outperform current best known methods for quantum
state generation of in particular low entanglement states.

We will present the baseline procedure as given in [47] in Section 4.1 and extend this procedure
by applying stricter bounds on the size of the unitary operators generated in Section 4.2. Going
further we develop a greedy algorithm in Section 4.3 which seeks to perform a similar procedure
to that in Section 4.1 but with unitary operators of size no greater than 4 x 4. Finally, we present
alternative circuit ansatzes in Section 4.4 which provide low depth variations on the procedures
presented in Sections 4.1-4.3. We demonstrate the performance of each of these procedures in
Section 4.6 for Gaussian, Random and W-States.

4.1 QOutline of Baseline Procedure

This baseline procedure is based on the work of Cramer et al[47] and was originally proposed
for the purposes of quantum state tomography. The procedure sequentially disentangles some
arbitrary system [¢) by constructing unitary operators of size k = [log(D)] + 1, where D is the
maximum bond dimension in the MPS representation of the state.

Begin by considering the MPS form of some quantum system |¢) formed as per Section 1.5.2.

do < D~di < D~y < D
t o (o Q (4.1)
OEoRO

We may form the reduced density matrix over the first x sites locally by first ensuring the MPS
is in canonical form as per Section 1.5.4 and performing the operations in Equations 1.16-1.17 to
form p,.q. The eigendecomposition of p,eq is,

Prea = PT P71 (4.2)

= 3 Mlal. (4.3

where P is a matrix of eigenvectors, I' is a diagonal matrix of descending eigenvalues, and \; and
|¢;) are the ith eigenvalue and eigenvectors in descending order respectively. We then argue that
the rank of this reduced density matrix must be bounded by D = 2~1. To see this, consider the

30

4.1. OUTLINE OF BASELINE PROCEDURE

following formulation of the partial trace of a system of two qudits

b24
Contract> Trace Contract <:> (4 . 4)
7

where one qudit is formed by the contraction of the first s sites, with the remaining sites forming
the other qudit. We note that the contractions in Equation 4.4 are ordinary matrix multiplications.
We know that for ordinary matrices that,

rank(AB) < min(rank(A), rank(B)). (4.5)
Recalling that our internal bonds are in fact diagonal matrices with D non-zero elements we can
then conclude that the matrices resulting from the contractions have a rank bounded by D. Hence
our final reduced density matrix is also bounded by D. It’s important to note here that our rank
bound for the reduced density matrix is strictly dependent on the right internal bond of the xth
site. This will be important in Section 4.2 where we use this fact to determine a construction with
possibly smaller unitaries.

The implication of this result is that there must then exist some density matrix with the
same eigenvalues as p,.q but with one fewer qubit. Hence we may construct some operator to set
one of the qubits to state |0) in p,..q. To do so, take the eigenvectors |¢;) and extend them to form
a basis of dimension 27, using this basis to construct the operator U = .2 [iX¢;| where |i) is the

i=1
ith computational basis vector. The action of this operator on the first « sites will be,
Pl 2:@71 9K
UpreaU' = Y 1iXeil Y Ail63Xoil D o)kl (4.6)
i=1 j=1 k=1
2k 2»@—1 9K
=SS i) (8 w
i=1 j=1 k=1

= 3" Al (48)

Recognising that all terms i > 2°~! are zero we can conclude that the first qubit has been suc-
cessfully set to zero. Having applied U onto the MPS one can then shrink the MPS by one qubit
and repeat the procedure until all qubits have been set to |0). One can then apply the inverse of
these unitary operations in reverse order from the |O®N > state to reconstruct [¢). An example final
circuit for constructing a four qubit arbitrary state in given in Figure 4.1. We provide the complete
procedure which we name the Matrix Product State Circuit Generator (MPSCG) in pseudocode
in Algorithm 1.

An important note to make is that there is a degree of freedom in constructing the complete
basis which will form the unitary operators which zero out the qubits. We used the software
package NumPy[42] to determine the eigensystem of p,.q which incidentally provides a complete
basis for Hermitian matrices which we used for all procedures in this thesis. An extension to this
thesis could possibly include taking advantage of this degree of freedom to make more optimal
choices for U.

4.1.1 Decomposing Unitary Gates
The MPSCG procedure generates unitary gates, which although may be applied to MPS
and state vector simulators with ease, would not be executable on real quantum devices without

31

4.2. VARYING &

Algorithm 1 MPS Circuit Generator (MPSCG)

Input: MPS |¢) = |qoq1 - - - ¢,) in left canonical form
Output: List of unitaries Uj(iﬂ) (i)

1: function CONSTRUCT UNITARY(|¢)), i, k)

2: Pred < Z;J::*l (q12j+1) 12X Qi+ > where |¢;) contain their right bond tensor
3: {l6i)} <= {|0i) |prea |pi) = Ni|di)} > Assume these are ordered in descending order of \;
4: {loa)} < {loa)} U {lo:) | (¢iloj) =6,V |9;)} > See Note on extending to a complete basis
5: Ui it1,..(i+x) < 212:1 i)l

6: return U;

7: end function

8: R <~ MAXIMUM BOND DIMENSION(|1))) > May be determined by inspection of the |¢;)
9: Kk« [logy(R)] + 1

10: for |¢;) € |¢) do

11: Ui it1,.(i+x) < CONSTRUCT UNITARY(|%)), 7, k)

12: V) <= Uiitr,...(i+x) V)

13: end for

10) — q3
U
0) —+ — @
Uz
0) ——— — — @
Us
0) —

Figure 4.1: Circuit to construct the state |¢)) = |qoq1g2¢3) with k = 2

further decomposing them into single-qubit rotations and CX gates. For two-qubit unitaries this
procedure is well established and can be done using no more than three CX gates and seven single
qubit rotations for any U € U(4)[48]. At three qubits, one may use a generalisation Cartan’s KAK
decomposition, known as the Khaneja-Glaser decomposition to create a circuit consisting of no
more than 40 CX gates and 98 single-qubit rotations|49]. In general, it is found that arbitrary
n-qubit unitary gates may be decomposed into elementary gates with O(4™) CX gates|24|. This
is obviously impractical, hence we must either determine a more efficient unitary decomposition
or limit the size of the unitaries which we generate. In this thesis, we will go down the latter
route and devise algorithms with the aim of minimising the size of the unitaries generated as much
as possible. We will defer to Qiskit’s unitary decomposition based off [45] to decompose all the
unitaries we generate.

4.2 Varying k

The MPSCG procedure works well for states that may be represented with an MPS of low
bounded bond dimension, such as the W-State which has a bond dimension of 2 everywhere.
However, as soon as the bond dimension for some given state increases slightly anywhere along the
MPS, the procedure becomes considerably worse as the size of the unitaries along the entire state
increases. To try and address this problem, in particular for states with localised entanglement,
we adapt the procedure to apply a tighter upper bound on the rank of the reduced density matrix

32

4.3. FIXING k TO 2

of some subsystem of the MPS. Recognising that from the prior section the rank of the reduced
density matrix is bounded not by the overall maximum bond dimension but by the internal bond
to the right of the ¢+ & site, we can construct an algorithm to set our x dynamically. In Algorithm
2 we outline the steps needed to execute this variation on the MPSCG procedure.

Algorithm 2 Variable £ Quantum State Generator (VMPSCQG)

Input: MPS [¢) = |q0q1 - - - qn)
Output: List of unitaries UiT,i—i-l,...(z'—i-n)
1: 10
2: while (0]g;) # O0Vg;) € |¢) do
if (0]g;) # 0 then
K<+ 1
while SCHMIDT RANK(|Gitx—1), |¢itx)) < [logy(k)] + 1 do
K< r+1
end while
Usit1,..(i+x) < CONSTRUCT UNITARY(|9)), %, k) > As per Algorithm 1
V) < Usit1,...(i+x) |4)
10: end if
11: 14+ 1+1
12: end while

w

Note that this algorithm, like MPSCG, is deterministic. You are guaranteed to recreate any
state |¢) perfectly. This variation on the algorithm will be useful for states with highly localised
entanglement, however it will still generate some large unitaries which is not preferable. We will
name this variation the Variable (k) MPSCG (VMPSCG). We present results for this procedure

for Gaussian and Random states in Section 4.6.2.

4.3 Fixing x to 2

The VMPSCG procedure presents an improvement over the baseline MPSCG procedure,
however, the generation of unitaries larger than 4 x 4 is still not preferable as they require consid-
erably more elementary gates than two-qubit unitary operators. To remedy this we will propose a
greedy algorithm that may require numerous passes over the MPS but will only generate two-qubit
unitaries.

For this procedure, consider the reduced density matrix over the first kK = 2 sites,

QK
Pred = Z Ai |9i) il - (4.9)
=1

Unlike in Section 4.1, prq is full rank matrix. Hence applying the same operator U = 3.7 [i)¢]

will result in the following reduced density matrix,
2r gr 9k

UpreaU" = Z Z D LiXil (g 16:X51) 10)k] (4.10)

=D 0 Gy ik (4.11)

i=1 j=1 k=1

33

4.3. FIXING k TO 2

= >l (4.12)

= A1 [00X00] + Ao [01)X01] + Az [10X10] 4+ Ay |11)(11]. (4.13)
Unfortunately we have been unable to successfully set the first qubit to the |0) with this operator,
but we can show that this is the closest one can get to the |0) state on the first qubit by application
of a two-qubit operator.
It has been shown in [50] that for a Hermitian matrix A with diagonal entries hq, hs...h,
and eigenvalues Aj, Ao ...\, that

(hl,hg,...,hn) < ()\17)\27-“7)\71) (414)
where < denotes majorisation and is defined as both of the following conditions being true,

k k

for some (z1,z9,...,2,) and (y1,¥2,...,Yn), and some k = 1,2...n. Now, noting that the proba-
bility of measuring |0) on the first qubit is
<00|pred|00> + <01|p7’ed|01> = (pred)OO + (pred)ll = hl + h2 (417>
prior to applying the operator U. After the application of U this becomes,
(00|U preqUT]00) + (01U preqUT|01) = Ay 4 Ag. (4.18)
Finally, as we can see from Equation 4.14,
hy +ho < X\ + Xy (4.19)

Hence we may conclude that application of the operator U will get you as close to setting the first
qubit to |0) as possible. Given this result we construct a greedy algorithm, as per Algorithm 3,
which sets every qubit as close as possible to |0) through the application of U, repeating until some
threshold minimum fidelity in met. We will name this procedure Fixed (k) MPSCG (FMPSCG).

Algorithm 3 Fixed £ Quantum State Generator (FMPSCG)

Input: MPS |¢) = |q0¢1 - - - ¢n), K, Threshold fidelity F
Output: List of unitary, layer tuples (Uiﬁj_..k,)
1: 1+ 0)
2 while | (u|Uf[0°¥)|" < F do
3: for |¢;) € |¢) do
: (Ui (i41),...(i+x), 1) <= CONSTRUCT UNITARY(|?)), i, k) > As per Algorithm 1

4

5 V) <= Ui (i41),...(4x) [¥)
6: end for
7
8

I+ 1+1
. end while

It is hoped that this procedure reduces the overall depth of the state preparation circuit
as although the procedure produces more unitaries than MPSCG and VMPSCG which produce
strictly O(n) unitaries, the cost of generating unitaries of size greater than 4 x 4 is prohibitive
which this procedure avoids. We demonstrate the performance of this procedure in terms of state
fidelity, circuit depth and CX count for Gaussian and Random states in Section 4.6.3.

34

4.4. A LOW DEPTH APPROACH

Although not investigated in this thesis, this procedure may be hybridised with VMPSCG,
i.e. vary x but with some upper bound. This will in general harm the overall fidelity of the state
generated and will hence still necessitate multiple passes over the MPS, however, it may result in
overall fewer layers than pure FMPSCG.

4.4 A low depth approach

It is natural at this point to consider the possibility of parallelising these procedures to
generate even lower depth circuits, especially in the case of states which are well served by the
baseline MPSCG procedure such as W-States. One such optimisation we introduce is that given
the ability to start at either end of the MPS to undertake any of the procedures in Sections 4.1-4.3,
it is possible then to do both in parallel and meet in the middle. This halves the depth of the
circuits generated. We will name this type of circuit “V-Shaped” MPSCG (VSMPSCG). However,
we can go even further and generate circuits with O(log(n)) depth. To do so we zero out every
k qubit simultaneously and then work in jumping over any qubits that have already been zeroed
out. We will name this type of circuit “Low Depth” MPSCG (LDMPSCG). Example circuits for
both these procedures can be found in Figure 4.2.

Fundamentally these circuits work because of the result in Section 4.3 which applies equally
to any reduced density matrix, not just those formed by adjacent qubits. That said it is important
to consider the rank of the reduced density matrix formed by these non-edge qubits as it may
inform the fidelity lost by using these circuits. The simplest way to approach this is to consider a
3 qudit system where the central qudit is the subsystem which we wish to determine the reduced
density matrix. Then consider the remapping of the left qudit to the right of the system such that
the qudit of interest is then located at the edge of the MPS,

D+ R R

%Eh qz

Ao Ip)
\ - 0 [qo)
n)\n

where we have increased the size of the ¢;¢2 bond tensor and the ¢ qubit tensor to “pass through”
the qoq; through ¢o. Hence all sites on the right partition have had their internal bond dimension
increase by D. This is of course an upper bound for the rank of the matrix. Most implementations
of site swapping, including the ones used by the software packages used in this thesis implement
the swapping of sites through the contraction of the region of interest followed by a decomposition
with the indices of the swapped sites moved around. This allows for a possibly smaller internal
bond dimension to arise after swapping. As we will see in the Results section, this is often what
happens in practice for slightly entangled states.

Note that, as we are seeking only 2-qubit unitaries we will fix k = 2 and use an FMPSCG
like algorithm with some threshold fidelity. Although in theory one is free to apply larger x values
based on the bond dimension of the MPS. We present the results for both these alternative circuit
ansatzes in Section 4.6.5 for Gaussian, Random and W states.

35

4.5. TAILORING CIRCUITS TO NISQ ERA DEVICES

a) b)
0) 0 \ 10) 0 \
U U
o) 0) 24
3
0) Her o) 2 U
5 2
0) o w o 4 4P|)
10) 1 1 Ur - 0) 4 1 1 b7 -
U, U.
) e 0) % T
U,
|0>LU_0. |0>LU_0
0y 2) oy 24)

Figure 4.2: Example 8 qubit circuits for the 2 low depths procedures in Section 4.4. (a) VSMPSCG
procedure with k = 2 (b) LDMPSCG procedure with x = 2. Note that the numbers next to the unitary
gates denotes the qubit ordering of the operator

4.5 Tailoring Circuits to NISQ era devices

The final problem we will consider in this thesis is the tailoring of these state preparation
circuits to given hardware layouts. Although typical circuit diagrams make it appear as though any
qubit may interact with any other, in real quantum devices this is seldom the case. In general, each
qubit may only be connected to a few others in its local vicinity and swap gates are required if you
wish to interact one distant qubit with another. SWAP operations however are costly, requiring 3
CXS each, hence avoiding these SWAP operations would be ideal. Hence we must map our states
onto these hardware layouts and determine some procedure to sequentially zero out each of the
qubits.

As we have been only considering 1-dimensional tensor networks in this thesis, this connec-
tivity will not correspond to the connectivity of a real quantum device in general. However, the
result from Section 4.3 permits us to construct a unitary from any reduced density matrix that
we wish. That said, it is still prudent to pay attention to the bond dimensions that will result
from these constructions. Extending from Section 4.4 it is clear that moving qubits results in a
linear increase in the bond dimensions to the right (or left) of the system of interest. Hence we
can conclude that at worst the bond dimension for a reduced density matrix over g; sites will be
Zie qi<Li + R;) where L; is the bond dimension to the left of qubit i, and R; is the bond dimension
to the right of qubit 4.

Given this, we have permitted ourselves a significant degree of freedom in determining the
structure of the circuit. As it is typical for quantum hardware layouts to contain leaf nodes, this
appeared to be a natural starting point for our procedure. For simplicity, we restrict ourselves
k = 2. Our proposed algorithm will begin at some given leaf node and attempt to zero it out,
eliminating it from the graph, then continue by picking another leaf node from the reduced graph,
working in until all nodes have been attempted to be zeroed out. In the event that the graph being
processed does not have any leaf nodes, one edge will be cut at random. As per the procedure in
Section 4.3, it may be necessary to do several passes over the original graph to successfully meet

IThis is a loose upper bound. In general, only the leftmost qubit may have a contribution from both both the
left and right bipartition

36

4.6. RESULTS

some threshold fidelity. An outline of the procedure (which we will call Connectivity Constrained
MPSCG (CCMPSCG)) is provided in Algorithm 4. We also provide an example circuit for the
hardware layout of IBM’s 7 qubit Lagos device in Figure 4.3.

In general, the circuit depth generated by this algorithm will be O(n), which is a regression
from the low depth procedures discussed above. However this does not account for the SWAP’s
that would be required for the other procedures. Ultimately, this procedure serves as a proof of
concept for tailored quantum state preparation circuits which if successful can give rise to other
procedures which utilise the properties of the graphs to generate lower depth circuits.

Algorithm 4 Connectivity Constrained Quantum State Generator (CCMPSCG)

Input: MPS [¢) = |qq1 - . gn), G = (V, E), Threshold fidelity F’
Output: List of unitary, layer tuples (UiT,j’)

1: [+ 0 5

2 while | (4[U][0°¥)]" < F do

3: G = (V,E) < CorY(G)

4: while [s EMPTY(G) = false do

5: for i € V do

6: if DEGREE(G, i) = 1 then

7: CONTINUE > i.e. If no leaf nodes, then last node is selected
8: end if

9: end for

10: i,j < EDGE(G, i) first

11: |*) < REMAP(|9) , 1, j) > Remap such that i, j are next to each other
12: (Ui j,1) <= CONSTRUCT UNITARY(|¢)*), i, 2) > As per Algorithm 1
13:) < Usj [¢)

14: REMOVE NODE(G, 1)

15: end while

16: l+1+1
17: end while

4.6 Results

To demonstrate the efficacy of the various procedures outlined in the previous sections we will
generate circuits for a number of different states commonly encountered in Quantum Computing
and compare circuit depths, gate counts and state fidelities between each of the procedures in
addition to the state initialisation procedure found with Qiskit[51]. We used Quimb to create the
MPS of the states and to compute the reduced density matrices. NumPy was used to determine
the eigensystems of the reduced density matrices. Unitary decomposition and the execution of
final circuits was completed using Qiskit. The states generated were;

e Gaussian States: These are encountered in Options Pricing Algorithms|5] where one requires
the underlying distribution of the asset price at maturity as an input. We expect that these
states are slightly entangled but should still be constructible using most procedures at a
relatively low depth. These states are of the form

2 455

e 2\ ¢

[0) (p,0) =Y ——=——1i) (4.20)

— 27

37

4.6. RESULTS

0) %) 0 (1) 2
0=y, (O—0O—)
0y 4 4 10
0) o 2y

| 3
0)] o))
10) | Ve N , 11 L

of P L n

0 bl O—0—®
0) —)

Figure 4.3: (a) A circuit generating state |¢)) which respects the qubit connectivity of ibm lagos. (b)
The qubit layout and connectivity of IBM’s 7 qubit device ibm_lagos

with p being the average and o being the standard distribution as is typical. For all our
simulations we set u = 2V /2 and o = 2V /3, this results in a rather wide distribution with
the expectation that most states should have a significant probability of being measured. An
example of this state is provided in Figure 4.4a

e W-States: This state represents a distinct kind of multipartite entanglement. It is of the

form

) = ——([10....0) + [010...0) +---+0...1)) (4.21)

VN

The important thing to note about the W-state is that it has a bipartite entropy of 2 between
any two subsystems of the state. Hence this state should be constructible with all procedures
easily. An example of this state is provided in Figure 4.4b

e Random States: These states are generated randomly using Qiskit. We anticipate that these
states are highly entangled and will not be easily constructible. An example of this state is
provided in Figure 4.4c

4.6.1 MPSCG

Firstly we analyse the performance of the MPSCG procedure outlined in Section 4.1 for the
three states specified above. We expect the fidelity of the circuits generated to be 100% as the
procedure is deterministic. This is verified Figure 4.5a.

Next, we analyse the size of the unitaries for the three states. We see in Figure 4.5b that as
expected the random states required the largest unitaries, with W States requiring only requiring
4 x 4 sized unitaries regardless of the overall size of the system. As discussed in Section 4.1.1 the
decomposition of arbitrary gates of size N x N requires an exponential number of elementary gates,
Figure 4.5c illustrates this correspondence with the increase in « for random states corresponding
directly to the exponential growth in the circuit depth.

The primary result of interest, circuit depth compared to Qiskit can be seen in Figure 4.5d.
We see that W-States may be executed with an exponentially smaller depth compared to Qiskit.
This is not surprising as W-States, having an entanglement entropy of 2 everywhere, are known to
be a good fit for this type of procedure as seen in [47]. Gaussian and Random States appear to scale

38

4.6. RESULTS

Gaussian State with y=16.0 and 0=10.67 5 qubit W State
0.045 7 0201 e — —
v w 0_15 [owe TEEEEEEEE CEEEERRREE PR
2 0.030 5
2 2
2 2010 - ST
& @
0.015
0.05 1 bl
0.000 I 0.00 -
OO NONO~ONYONONONDNONONO~NONON ~ d =]
I S S S O S SO o s § &
QQQQQQQQ%%?’WNWW’WNWW’WNN (5] S S
(a) A 5 qubit Gaussian State (b) A 5 qubit W-State
5 qubit Random State
0124 e
fo09+——— 4
b=
a
3
© 0.06 1 - B [.
o
0.03 | 4 Ion 1 N 5 BN DO N B
0.00 I'.'. III.III. I.I'II. I.

OO O~ ONO M ONO~NONO OO O N OO OO
SSRRISSNOS, waogmgoowwcaowhmc:m
S S SN e S eSS NS eSS aiwie s

NSNS
OOOOOOOS’S‘S‘SS'SB L o A A i e i L

(¢) A 5 qubit Random State

Figure 4.4: Examples of Gaussian, W and Random States that we will be determining circuits for

similarly to Qiskit, but with a larger constant factor meaning that overall circuit depth and gate
counts are larger than Qiskit. This is not an entirely unexpected result, with our VMPSCG and
FMPSCG procedures designed to address this. Results for both of these procedures for Gaussian
and Random states are found in Sections 4.6.2 and 4.6.3 respectively.

Finally, we analyse the correlation between the CX and U(6, ¢,) gate counts and the circuit
depth for Gaussian states generated using both Qiskit and MPSCG as per Figure 4.6.4. We
recognise that in the case of MPSCG the depth of the circuit is closely correlated with both
CX and single-qubit rotation gate counts, whereas with Qiskit it appears that the depth is more
closely correlated to the CX gate counts. The natural explanation here is likely to be related
to the “block-wise” locality of the MPSCG procedure which results in at most a distance of &
between the target and the control of any given gate. This would permit some greater degree
of parallelisation of single-qubit operations far from the CX gate. This would not be the case
for Qiskit’s procedure which may in general result in CX gates spanning the entire circuit hence
preventing any compression of single-qubit gates and hence resulting in the CX gate being a bigger
driver of overall circuit depth ultimately resulting in correlations which we observe.

39

4.6. RESULTS

Fidelity of states generated using MPSCG Size of unitary operators for states generated using MPSCG
@ Gaussian States 61 —8— Gaussian States
Loa ® W States —e— W States
. @ Random States —o— Random States

102 4

%‘ 100 L] L] L] L] L] L] L] L] L] = 4
0.98 -
5
0.96
2
2 3 4 5 6 7 8 9 lb 2 3 4 5 6 7 8 9 10
qubits qubits
(a) Fidelity of states generated using MPSCG (b) & values for states generated using MPSCG

Depth and k values for Random States generated using MPSCG
6.0d Circuit Depth for states generated using MPSCG and Qiskit

—&— Gaussian States (Qiskit)

5.5 —8— Gaussian States (MPSCG)
k103 10¢ 4 —k— W States (Qiskit)
5.04 —e— W States (MPSCG)
—&— Random States (Qiskit)
45 —&— Random States (MPSCG)

103 4

= 4.0+ F 102

depth/qubits
Depth

3.5 4
102 4
3.0 4
k10!

2.54
101 4

2.04

qubits qubits

(¢) K, circuit depth correspondence for states generated (d) Circuit Depths for MPSCG and Qiskit
using MPSCG

Figure 4.5: Baseline Statistics for the MPSCG procedure on Gaussian, W and Random States

4.6.2 VMPSCG

In our first attempt to improve upon the state preparation construction for Gaussian states,
and to a lesser extend random states, we now consider the VMPSCG procedure. Just like the
MPSCG procedure from the previous section, this procedure is also deterministic hence all circuits
generated have a fidelity of 100%. To quantify the improvement in the size of the unitary matrices
we present the average x values for the two states compared to MPSCG in Figure 4.7a. We see
an improvement to the average x in VMPSCG compared to MPSCG for both states. Considering
the overall circuit depths as per Figure 4.7b we note that this does indeed result in a decrease
compared to the standard MPSCG procedure for almost all system sizes. However, we recognise
that this procedure is still worse than Qiskit for both Gaussian and random states. This is an
expected result for random states, however, we had hoped that this procedure would’ve resulted
in stronger performance for Gaussian states which have only modest entanglement. Given this
result, we conclude that having any unitary operator of more than 2 qubits is too detrimental
to the circuit depth without any tailored decomposition strategies. The path forward to achieve
results that outperform Qiskit may then involve fixing k = 2 as per the upcoming section.

We also include the CX gate counts for this procedure as well as the standard procedure
and Qiskit in Figure 4.7d. As expected, we see a pretty close correspondence to the circuit depth.

40

4.6. RESULTS

Depth and CX gate counts for Guassian States

Depth and U(8, ¢, A) gate counts for Guassian States

300 4 —a— Qiskit a0 | A Qiskit
—8— MPSCG | —— wpsca
—&— Qiskit 500 —&— Qiskit

2501

—8— MPSCG

[400

300 4

—8— MPSCG

300

depth

200 1

Cxgatecount
=
&
o
Ui, ¢, A) gate count

200

100 4
r 100

qubits qubits

Figure 4.6: Number of CX (left) and U(0, ¢, A) (right) gates and circuit depths for MPSCG and Qiskit
procedures

Furthermore, we see that the x, circuit depth correlation we noted in the previous section holds
true with this variable procedure as well, as can be seen in Figure 4.7c. We note however that
the correlation appears to be closer than it was for MPSCG which can be likely attributed to the
tighter bounds on the size of the unitaries which this procedure imposes.

Although this procedure does not outperform Qiskit we still recognise that it outperforms
the standard MPSCG, and at worst will be equal to it. Hence, we suggest that this procedure
supplants MPSCG for those requiring a deterministic state preparation algorithm.

4.6.3 FMPSCG

Having exhausted our deterministic procedures, we now attempt our greedy FMPSCG algo-
rithm on Gaussian and random states. We apply the algorithm for Gaussian and Random States
with a threshold fidelity of 99% and present the final fidelities for both states in Figure 4.8a. We
see that the fidelity of the Gaussian state is always close to 100% whereas for Random States we
note that the fidelity approaches the minimum threshold of 99%. Looking at the number of layers
needed to reach this threshold fidelity in Figure 4.8b we see that for Gaussian states the number of
layers remains fixed at one throughout, whereas for random states we see an exponential increase
in the number of layers as expected.

We present the overall circuit depths compared to Qiskit in Figure 4.8c. As hinted at from
the number of layers, we see that Gaussian states have a significantly reduced depth compared
to the previously discussed procedures including Qiskit. We also see that for Random states,
despite the exponential growth in the number of layers and circuits depths persisting, FMPSCG
is likewise outperforming all previously discussed procedures including Qiskit. Taking a look at
the CX gate counts in Figure 4.8d however we see that Qiskit requires fewer CX gates overall for
random states. This suggests that the FMPSCG generated circuits are far more dense, which we
can justify theoretically as increasing the number of layers in an FMPSCG circuit increases the
depth of the circuit by x. Hence a doubling of the number of unitary operations only results in
an increase of two in the circuit depth (in terms of the U; operators). That said, as we note from
Section 2.4.1 the primary driver of noise in NISQ) era devices is the limited coherence time of the
device more so than the gate infidelities. Hence an improvement in the circuit depth at the cost
of a higher gate count may still be beneficial. However, a more robust analysis would need to be
undertaken here to confirm this.

41

4.6. RESULTS

Average K value for MPSCG and VMPSCG Circuit Depth for states generated using MPSCG, VMPSCG and Qiskit

6.0 1 —8— Gaussian States (MPSCG) —&— Gaussian States (Qiskit)
—&— Gaussian States (VMPSCG) —8— Gaussian States (MPSCG)
5.5 1 —e— Random States (MPSCG) 10* 4 —&— Gaussian States (VMPSCG)
—&— Random States (VMPSCG) —&— Random States (Qiskit)
—&— Random States (MPSCG)
—#— Random States (VMPSCG)

5.0 4

4.5 4
103 4

4.0 4

Average K
Depth

3.5+
102 4

3.0

2.5 10! 4

2.0

qubits qubits
(a) Average k values for MPSCG and VMPSCG (b) Circuit Depths for MPSCG, VMPSCG and Qiskit

Depth and Average « values for Random States generated using VMPSCG

200 1 CX Gate count for states generated using VMPSCG, MPSCG and Qiskit
. 103

—i— Gaussian States (Qiskit)

3.75 4 104 4 —8— Gaussian States (MPSCG)
—— Gaussian States (VMPSCG)

3.50 4 —a— Random States (Qiskit)
—&— Random States (MPSCG)

3.25 103 4 —®— Random States (VMPSCG)

3.00 4

Average Kk
depth/qubits
#CX gates

2.75
2.50
2.25 1 10! 5

2.001

qubits qubits

(¢) K, circuit depth correspondence for states generated (d) CX Gate counts for MPSCG, VMPSCG and Qiskit
using VMPSCG

Figure 4.7: Baseline Statistics for the VMPSCG procedure on Gaussian and Random States

Overall this procedure has resulted in a significant improvement over Qiskit for Gaussian
states in terms of both circuit depth and CX gate counts, demonstrating the benefit of this algo-
rithm for slightly entangled states.

4.6.4 LDMPSCG & VSMPSCG

Next, we discuss the two low depth procedures formulated in Section 4.4. We will analyse the
performance of all three states we have introduced in this chapter as they all could benefit from
these procedures. As in the previous section the fidelity is set to a minimum of 99%. Firstly, we
observe in Figure 4.9a that the fidelity of the states produced is comparable to the best procedures
encountered thus far, with no notable decline across any of the states and only minimal difference
between the two low depth procedures.

Analysing the circuit depth of Gaussian and W States for the low depth procedures as
per Figure 4.9¢, we see that both LDMPSCG and VSMPSCG outperform the best procedures
encountered thus far, with LDMPSCG performing the best overall. This means that for Gaussian
and W States we have constructed a circuit that scales as O(log(n)) which is possibly better than
any known construction for these states. Analysing the CX gate count for these circuits as per
Figure 4.9d we see that all procedures regardless of depth or the overall number of layers appear to

42

4.6. RESULTS

Fidelity of states generated using FMPSCG with k=2 Number of layers to achieve 99% fidelity in FMPSCG (with k = 2)
1000 ® L] L] L L L L] L] L] —m— Gaussian States
—&— Random States
102 4
0.998 -
0.996 -
] z
T < 101
0.994
]
]
0.992 4
B Gaussian States ™ -
m Random States o ™ 10°
0.990 1
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
qubits qubits

(a) Fidelity of Gaussian and Random States when run (b) Number of layers required to achieve 99% fidelity
with a 99% threshold

Circuit Depth for states generated using FMPSCG (with k = 2) and Qiskit CX Gate count for states generated using FMPSCG (with k = 2) and Qiskit

—i— Gaussian States (Qiskit)
—m— Gaussian States (FMPSCG)
—i— Random States (Qiskit)

—m— Random States (FMPSCG)

—i— Gaussian States (Qiskit)
—m— Gaussian States (FMPSCG)
—i— Random States (Qiskit)

107 { —# Random States (FMPSCG)

103 4

102 4

#CX gates

101 4
10! 4

qubits qubits

(¢) Circuit Depths for FMPSCG procedure compared to (d) CX Gate counts for FMPSCG compared to Qiskit
Qiskit
Figure 4.8: Baseline Statistics for the FMPSCG procedure (xk = 2) on Gaussian and Random States

have a similar gate count. This is particularly interesting for random states using VSMPSCG as
the number of layers appears to be significantly greater than other procedures. The likely reason
for this are the optimisation strategies in Qiskit’s transpiler which was used to decompose the U;
operators.

For Random states, we plot the number of layers for the two low depth procedures compared
to FMPSCG in Figure 4.9b. We observe that the number of layers for VSMPSCG procedure grows
faster than FMPSCG and LDMPSCG which have a similar number of layers. This was not an
expected result. We however believe the reason for this result is the symmetry of the circuit ansatz
along the central bipartition. Random states obviously do not possess this symmetry. Gaussian
(with g = 2V /2) and W States however do have this symmetry and hence are seemingly unaffected
by the symmetry implied in this ansatz. Analysing the depths of the circuits we see that for random
states the LDMPSCG procedure has a significantly greater depth than FMPSCG and VSMPSCG
in spite of the relatively fewer layers compared to VSMPSCG in particular. This is a result of the
fact that for FMPSCG and VSMPSCG the depth increases as O(kl + n) whereas for LDMPSCG
the depth increases as O(nl), where [is the number of layers. Hence, despite the number of layers
being lower the increase in the number of qubits continues to drive the depth higher.

Analysing the ratio of CX and U(6, ¢, \) gates to circuit depth for the low depth, fixed &

43

4.6. RESULTS

Fidelity of states generated using LDMPSCG and VSMPSCG Number of layers to achieve 99% fidelity in FMPSCG, VSMPSCG and LDMPSCG
10001 ® L] L] L [] [] [] [] [] - FMPSCG
-8~ LDMPSCG
300 - —# VSMPSCG
0.998 -
250
0.996 -4 200 A
£ 4
T [
[>
£ & 150 A
0.994]
100
| ® Gaussian States (LDMPSCG) +*
0.992 + Gaussian States (VSMPSCG) 50
#® W States (LDMPSCG) bt
+ W States (VSMPSCG) +
® Random States (LDMPSCG) .
0.990 1 + Random States (VSMPSCG) L] L] oA
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
qubits qubits

(a) Fidelity of Gaussian, Random and W States when (b) Number of layers required to achieve 99% fidelity for
run with a 99% threshold random states

Circuit Depth for states generated using LDMPSCG and VSMPSCG CX Gate counts for states generated using LDMPSCG and VSMPSCG

10* 4 Goussian States (FMPSCG)
—#- Gaussian States (LDMPSCG)
—- Gaussian States (VSMPSCG)
8 W States (MPSCG)

- W States (LDMPSCG)

—— W States (VSMPSCG)

103 { — Random States (FMPSCG)
—#- Random States [LDMPSCG)
—4 Random States [VSMPSCG)

B Gaussian States FMPSCG}
—#- Gaussian States (LDMPSCG)
—- Gaussian States (VSMPSCG)
8 W States (MPSCG)

—#- W States (LDMPSCG)

5 | —4 W states (vswpsca)
10" - Random States (FMPSCG)
—#- Random States (LDMPSCG)
—# Random States [VSMPSCG)

Depth

102 4
102 4

#CX Gates

10! 4

101 4

qubits qubits

(¢) Circuit Depths for proposed low depth procedures (d) CX Gate counts for proposed low depth procedures

CX to Circuit Depth ratio for states generated using various procedures U(6, ¢, A) to Circuit Depth ratio for states generated using various procedures

—&- Gaussizn States (Qiskit)
~@ Gaussian States (FMPSCG)

—k— Gaussian States (Qiskit)

o | - Gaussian States (FuPsCe)
2% 10" | -~ Gaussian States (LDMPSCG)
—~ Gaussian States (VSMPSCG)
—k— W States (Qiskit)

@ W States [MPSCG)

- W States [LDMPSCG)

—— W States (VSMPSCG)

—k Random States (Qiskit)
—® Random States (FMPSCG)
10° | -4~ Random States (LDMPSCG)
—~+ Random States (VSMPSCG)

- Gaussizn States (LOMPSCG)
—~ Gaussian States (VSMPSCG)
—- Wi States (Qiskit)

@ Vi States (MPSCG)

—8- Vi States (LDMPSCG)

—- Vi States VSMPSCG)

—&- Random States (Qiskit)
i Random States (FMPSCG)
—8 Random States (LDMPSCG)

109 4

#CX Gates/Circuit Depth

6x107%

#U(6, ¢, A) Gates/Circuit Depth

4x107t

2 3 9 5 6 7 8 9 10 2 3 9 5 6 7 8 9 10
qubits qubits
(e) CX to Circuit Depth ratio (f) U(0, ¢, \) to Circuit Depth ratio

Figure 4.9: Baseline Statistics for the LDMPSCG and VSMPSCG procedures with x = 2 on Gaussian,
Random and W States

and Qiskit procedures in Figures 4.9e and 4.9f allows us to gain some insight as to the density
of the circuits generated. Having low gate to depth ratios suggests that the circuit is of a lower
density with many operations not occurring in parallel. We see that the low depth procedures are

44

4.7. SUMMARY

very dense compared to Qiskit and low layer FMPSCG. This reaffirms the result in Figure where
we concluded that Qiskit’s circuits are being bounded by long-distance CX gates which prevent
the condensing, and hence parallelisation, of the circuit. We also note that in spite of the low
parallelisation capability of LDMPSCG for a large [, its circuit density still appears comparable
to l =1 VSMPSCG which is considerably greater than Qiskit and [=1 FMPSCG.

Overall we can conclude that these low depth procedures work particularly well for circuits
with low bipartite entropy which would otherwise be reproducible with FMPSCG with [= 1. In
this case, the circuits generated are of depth O(log(n)) which is significantly fewer than those
generated by Qiskit or standard MPSCG. We recognise, however, that these circuit ansatz may
not be ideal for states which require [> 1, and VSMPSCG in particular is not suited for states
which are asymmetric in this instance.

4.6.5 Connectivity Constrained Procedure

Lastly, we consider the connectivity constrained procedure for Gaussian and W-States. We
omit Random States from the discussion here as we recognise that in spite of improvements in
the circuit depths with the procedures discussed thus far, the overall depth required to reproduce
random states is far too high to be practicable on any NISQ era device. We generate circuits for
two quantum devices, the 7 qubit ibm lagos and the 16 qubit ibmq guadalupe. The hardware
layout for both of these can be found in Figure 4.11. As with FMPSCG we ran the algorithm
with a threshold fidelity of 99% and we present the results for the 2 devices compared to the
best procedure encountered thus far (LDMPSCG) in Table 4.1. The main question that we seek to
answer is whether this connectivity constrained circuit generation algorithm outperforms the other
procedures after being transpiled for a given hardware layout. To achieve this, we transpiled the
LDMPSCG and CCMPSCG circuits using Qiskit with the coupling map for the two devices set.
As we see, for the 7-qubit device we only see a negligible improvement if any in the depth of the
circuit, with the primary advantage of the CCMPSCG procedure being the CX gate count. For
the 16 qubit device, however, we see a more substantial improvement in the depth of the circuit.
Note that the transpilation procedure of Qiskit did give inconsistent results from one run to the
next when provided with a coupling map. Hence we have taken the best result produced but do
note that the overall variation was small, being at most 2-5 gates for any given circuit.

In Figure 4.10 we provide histograms of the Gaussian and W States produced with the
CCMPSCG procedure as run on an MPS simulator. This illustrates the overall high fidelity of the
states that are produced. Overall though, in spite of some improvement in the depth of the circuit,
the benefits do appear to be rather minimal for the circuit ansatz that we have constructed. That
said we believe that more sophisticated procedures should be able to produce circuits with more
significantly reduced depth. As we saw in the previous section, however, one must be careful to
consider the symmetry of the ansatz, and in particular for this connectivity constrained procedure,
that any symmetry in the qubit layout does not result in a similarly symmetrised circuit ansatz.

4.7 Summary

In summary, we have developed novel procedures to determine circuits for arbitrary quantum
states extending upon the existing framework of MPS assisted quantum state tomography. In
addition to successfully producing O(n) depth circuits for W states, a known result. We extended
the procedure to produce circuits of O(log(n)) and was able to demonstrate successful reproduction
of W States and Gaussian states with over 99% fidelity. We also demonstrated reproduction of
random states to a fidelity greater than 99% with arbitrary unitary gates no larger than 4 x 4.

45

4.7. SUMMARY

W State generated using CCMPSCG for ibm_lagos Gaussian State generated using CCMPSCG for ibmq_guadalupe

0164 1 1 1 1
0.12 0.009 Fr=====ssseseressssnnnnanaaas

2 2

= =

o o

= 0.087 8 .0.006 === m e

o o

)) HHHHHHHHHHH‘HHH
| -l H ‘ H ‘ ‘ H ‘ H ‘ ‘ ‘
0.00 - 0.000 -

(a) 7 qubit ibm_lagos

(b) 16 qubit ibmq_guadalupe

Figure 4.11: Qubit layout of 2 IBMQ devices which we benchmarked our connectivity constrained
procedure against

CcX U(#,¢,\) Depth

ibm_lagos Gaussian 47 13 35 33 41 27
W State 3515 3537 34 31
ibmq quadalupe Gaussian 235 36 84 88 74 41
W State 220 35 84 86 75 39

Table 4.1: Gate counts and depths for circuits generated using LDMPSCG (in red) and CCMPSCG (in
blue)

We found that the overall decomposition of these circuits in terms of CX and U(#, ¢, \) produced
depths no larger than those generated using Qiskit’s own state decomposition procedure. Lastly,
we developed a proof of concept where circuits may be constructed which strictly obey some given
qubit connectivity and demonstrated the successful reproduction of Gaussian and W-States to
O(n) with this constraint. This provides a framework in which for the development of low depth
circuit generation for NISQ era devices with limited qubit connectivity.

46

Chapter 5

Conclusion

In this thesis, we used Matrix Product States (MPS) as a tool to explore problems in quantum
computing and quantum information theory. To that end, we analysed the performance of quantum
algorithms under noisy conditions and addressed the task of preparing quantum states on gate
based quantum computers.

Starting with quantum algorithms we explored the classical simulatability and noise tolerance
of Grover’s Algorithm, the Quantum Approximate Optimisation Algorithm (QAOA) and recursive
QAOA (RQAOA). We found that Grover’s Algorithm was particularly simulatable as its relatively
low bipartite entropy allows for the construction of large tensor networks without encountering
an exponential increase in memory requirements. Regarding its noise tolerance, however, it was
determined that the algorithm was very susceptible and would not be suitable to run on Near
Intermediate-Scale Quantum (NISQ) devices. Simulating out large instances of Grover’s Algorithm
using MPS would be the natural extension beyond this thesis.

We verified the existence of Noise-Induced Barren Plateaus (NIBP) in QAOA and then
analysed the recently proposed RQAOA, investigating whether or not it is susceptible to NIBPs
in the same manner as its QAOA subroutine. We found that RQAOA was far less susceptible
to NIBP when solving the Max-Cut problem compared to standard QAOA and hence it is a far
better candidate algorithm to run on NISQ era devices. To that end, we then proposed techniques
that may be utilised to strongly reduce the size of the circuits that need to be run for the RQAOA
optimisation. We found that for 3-regular graphs one may achieve a 97% reduction in the number of
qubits required (for large n) for level 1 RQAOA. Having demonstrated a path forward to execute
RQAOA on a real quantum device, the next step here would be to complete this exercise and
attempt successful simulation of RQAOA on existing quantum hardware.

We then considered the generation of circuits for arbitrary quantum states and determined
new procedures which can reproduce states with limited bipartite entanglement with low depth
to high fidelity. These procedures were benchmarked using Gaussian, Random and W states. We
found that Gaussian and W States were reproducible with circuits of O(log(n)) depth. This out-
performs current best known circuits which are of O(n), and in the case of W states, strongly
outperforms Qiskit’s state initialisation procedure which requires exponential depth. We further
extended this procedure to determine circuits that obey the qubit connectivity of a given quantum
device, minimising the number of swaps that would otherwise be required. Going forward, running
these hardware specific circuits on the quantum device itself would be the natural extension to this
thesis. We also believe that considering more complex tensor networks beyond the 1-dimensional
MPS would possibly give rise to more efficient circuit constructions for a given hardware connec-
tivity. Higher dimensional tensor networks may also allow for the simulation of more complex
quantum algorithms, however with these higher dimensional tensor networks contraction strategy
becomes a far more complicated task compared to its 1-dimensional counterpart.

47

Bibliography

[1] P. Benioff, Journal of Statistical Physics 22, 563 (1980).

[2] R. P. Feynman, International Journal of Theoretical Physics 21, 467 (1982).

[3] Y. Manin, Sovetskoye Radio, Moscow 128, (1980).

[4] 1. Kassal, S. P. Jordan, P. J. Love, M. Mohseni, and A. Aspuru-Guzik, Proceedings of the
National Academy of Sciences 105, 18681 (2008).

[5] N. Stamatopoulos, D. J. Egger, Y. Sun, C. Zoufal, R. Tten, N. Shen, and S. Woerner, Quantum
4, 291 (2020), arXiv: 1905.02666.

[6] A. Montanaro, npj Quantum Information 2, 15023 (2016).

[7] M. Kjaergaard, M. E. Schwartz, J. Braumiiller, P. Krantz, J. [.-J. Wang, S. Gustavsson, and
W. D. Oliver, Annual Review of Condensed Matter Physics 11, 369 (2020), arXiv: 1905.13641.

[8] G. Vidal, Physical Review Letters 91, 147902 (2003).

[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th
Anniversary Edition (Cambridge University Press, Cambridge, 2010).

[10] Deutsch, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences
400, 97 (1985).

[11] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, arXiv:quant-ph/0001106 (2000), arXiv:
quant-ph/0001106.

[12] J. J. Sakurai and J. Napolitano, Modern quantum mechanics, 2nd ed ed. (Addison-Wesley,
Boston, 2011).

[13] R. Jozsa and N. Linden, Proceedings of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences 459, 2011 (2003).

[14] IBM Quantum, 2021.

[15] D-Wave Systems, 2021.

[16] F. Arute et al., Nature 574, 505 (2019).

[17] S. Aaronson and D. Gottesman, Physical Review A 70, 052328 (2004), arXiv: quant-
ph/0406196.

[18] R. Orus, Annals of Physics 349, 117 (2014), arXiv: 1306.2164.

[19] A. Dang, Ph.D. thesis, The University of Melbourne, 2017.

[20] M. Treinish et al., Qiskit/qiskit: Qiskit 0.30.0, 2021.

[21] J. Gray, Journal of Open Source Software 3, 819 (2018).

[22] C. Roberts, A. Milsted, M. Ganahl, A. Zalcman, B. Fontaine, Y. Zou, J. Hidary, G. Vidal,
and S. Leichenauer, arXiv:1905.01330 [cond-mat, physics:hep-th, physics:physics, stat] (2019),
arXiv: 1905.01330.

[23] L. K. Grover, arXiv:quant-ph/9605043 (1996), arXiv: quant-ph/9605043.

[24] R. Iten, R. Colbeck, I. Kukuljan, J. Home, and M. Christandl, Physical Review A 93, 032318
(2016), arXiv: 1501.06911.

[25] K. Georgopoulos, C. Emary, and P. Zuliani, arXiv:2101.02109 |[quant-ph| (2021), arXiv:
2101.021009.

[26] B. MEADE, L. LAFAYETTE, G. Sauter, and D. TOSELLO, 0 Bytes (2017).

[27] E. Farhi, J. Goldstone, and S. Gutmann, arXiv:1411.4028 [quant-ph]| (2014), arXiv: 1411.4028.

48

BIBLIOGRAPHY

[28] Complexity and approzimation: combinatorial optimization problems and their approximability
properties, softcover reprint of the hardcover 1. ed. 1999, 2. corr. printing ed., edited by G.
Ausiello (Springer, Berlin, 2003).

[29] The traveling salesman problem: a computational study, Princeton series in applied math-
ematics, edited by D. L. Applegate (Princeton University Press, Princeton, 2006), oCLC:
0cm83853510.

[30] M. X. Goemans and D. P. Williamson, Journal of the ACM (JACM) 42, 1115 (1995), pub-
lisher: ACM New York, NY, USA.

[31] Y. Haribara, S. Utsunomiya, K.-i. Kawarabayashi, and Y. Yamamoto, arXiv:1501.07030
|[quant-ph] 911, 251 (2016), arXiv: 1501.07030.

[32] J. Hastad, Journal of the ACM 48, 798 (2001).

[33] E. Farhi, D. Gamarnik, and S. Gutmann, arXiv:2004.09002 [quant-ph| (2020), arXiv:
2004.09002.

[34] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles,
arXiv:2007.14384 |quant-ph| (2021), arXiv: 2007.14384.

[35] J. A. Nelder and R. Mead, The Computer Journal 7, 308 (1965).

[36] M. J. Powell, Mathematics Today-Bulletin of the Institute of Mathematics and its Applications
43, 170 (2007), publisher: Citeseer.

[37] S. Bhatnagar, H. L. Prasad, and L. A. Prashanth, Stochastic recursive algorithms for optimiza-
tion: simultaneous perturbation methods, No. 434 in Lecture notes in control and information
sciences (Springer Verlag, London ; New York, 2013), oCLC: 0cn794710408.

[38] P. Virtanen et al., Nature Methods 17, 261 (2020).

[39] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, Nature Communications 12, 1791
(2021), arXiv: 2001.00550.

[40] P. Erdos and A. Rényi, The Structure and Dynamics of Networks (Princeton University Press,
ADDRESS, 2011), pp. 38-82.

[41] A. Hagberg, P. Swart, and D. S Chult, Technical report, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States) (unpublished).

[42] C. R. Harris et al., Nature 585, 357 (2020).

[43] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang, Physical Review Letters 125, 260505 (2020),
arXiv: 1910.08980.

[44] A. W. Harrow, A. Hassidim, and S. Lloyd, Physical Review Letters 103, 150502 (2009).

[45] V. Shende, S. Bullock, and I. Markov, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 25, 1000 (2006).

[46] P. Niemann, R. Datta, and R. Wille, in 2016 IEEE 46th International Symposium on Multiple-
Valued Logic (ISMVL) (IEEE, Sapporo, Japan, 2016), pp. 247-252.

[47] M. Cramer, M. B. Plenio, S. T. Flammia, D. Gross, S. D. Bartlett, R. Somma, O. Landon-
Cardinal, Y.-K. Liu, and D. Poulin, Nature Communications 1, 149 (2010), arXiv: 1101.4366.

[48] F. Vatan and C. Williams, Physical Review A 69, 032315 (2004), arXiv: quant-ph/0308006.

[49] F. Vatan and C. P. Williams, arXiv:quant-ph/0401178 (2004), arXiv: quant-ph/0401178.

[50] X. Zhan, Matriz Inequalities (Springer Berlin Heidelberg, Berlin, Heidelberg, 2002), Vol. 1790,
pp. 17-25, series Title: Lecture Notes in Mathematics.

[51] V. V. Shende, S. S. Bullock, and I. L. Markov, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 25, 1000 (2006), arXiv: quant-ph/0406176.

49

	Introduction
	The Quantum Circuit Model
	Quantum Algorithms
	Experimental Realisation of Quantum Computers
	Simulation
	Introduction to Tensor Networks
	Tensor Network & MPS Software Packages
	Outline of Thesis

	Grover's Algorithm
	Outline of Algorithm
	Constructing the Circuit
	Comparing Different Simulators
	Noise Model
	Results

	The Quantum Approximate Optimisation Algorithm
	Outline of Algorithm
	Noise-Induced Barren Plateaus
	Recursive QAOA
	Tailoring RQAOA to NISQ era devices
	Summary

	Quantum State Preparation
	Outline of Baseline Procedure
	Varying
	Fixing to 2
	A low depth approach
	Tailoring Circuits to NISQ era devices
	Results
	Summary

	Conclusion
	Bibliography

